

- PRACTICAL ENGINEERING DRAWING. AND

 THIRD ANGLE PROJECTION

 THIRD ANGLE PROJECTION}

FOR STUDENTS IN SCIENTIFIC, TECHNICAL, AND MANUAL TRAINING SCHOOLS
 AND FOR

ENGINEERING AND ARCHITECTURAL DRAUGHTSMEN, SHEET METAL WORKERS, ETC.

BY
Frederick Newaton Willson, C.E., H.M.,
Professor of Descriptive Geometry, Stereotomy and Technical Drawing
in the
John C. Green School of Science, Princeton University.

New York
THE MACMILLAN COMPANY
LONDON: MACMILLAN \& CO., LTD.
1898
all rights reserved

COPYRIGHT 1896
By
FREDERICK N. WILLSON
78739

PREFACE

TN this work the author has aimed to present, concisely and with illustration that should in especial degree conduce to the interest of a course, not only the usual matter of first books on mechanical drawing but also some of the additional topics which he regards as essential to the education of a draughtsman, and which could be included without having the book exceed, either in size or price, the leading works on the same subject, previously in the field.

Having in mind the needs, particularly, of those who have to regard more the immediate practical application of projections in shop work than the educational and disciplinary value of a course in Descriptive Geometry, the author presents only the Third Angle Method of making working drawings, now so generally employed in American draughting offices.

Since the pages were electrotyped an instrument of unusual convenience and merit has been placed on the market, a compass whose legs remain parallel during the process of opening, and which is therefore ready for use at all angles. Its importance justifies a reference to it here, since it cannot conveniently be incorporated under its proper heading in the text.

The unity and continuity of the course here offered is not affected by the lack of consecutiveness in the chapters, its issue in present shape having been contemplated at the time of writing, although it originally appeared in the author's larger work-Theoretical and Practical Graphics-in close correlation with a course on the Descriptive Geometry of Monge (First Angle Method) and its applications in Shadows, Perspective, Trihedrals and Spherical Projections.
F. N. W.

TABLE OF CONTENTS

NOTE-TAKING, DIMENSIONING, ETC.
Technical Free-Hand Sketching and Lettering. -Note- Taking from Measurement. - Dimensioning. - Conventional Representations.

Pages 5-10.

THE DRAUGHTSMAN'S EQUIPMENT.

The Choice and Use of Drawing Instruments and the Various Elements of the Drangbtsman's Equipment, - General remarks preliminary to instrumental work.

$$
\text { Pages } 11=20
$$

EXERCISES FOR PEN AND COMPASS.
Kinds and Signification of Lines. - Desigas for Elementary Practice with tbe Right Line Pen. Standard Methods of Representing Materials. Line Shading. - Plane Problems of the Right Line and Circle, including Rankine's and Kochansky's approximations. - Exercises for the Compass and Bow - pen, including uniform and tapered curves. - The Anchor Ring. - The Hyperboloid. - A Standard Rail Section.

$$
\text { Pages } 21-3^{8}
$$

ON HIGHER PLANE CURVES AND THE HELIX. Regarding the Irregular Curve. - The Helix. The Elllpse, Hyperbola and Parabola, by various methods of construction. - Homological Plane Curves. - Relief - Perspective. - Link - Motion Curves. - Centraids. - The Cyclaid. - The Companion to the Cycloid. - The Curtate and Prolate Trochoids - Hypo-, Epi-, and PeriTrochoids. -Special Trochoids, as the Ellipse, Straight Line, Limaçon, Cardioid, Trisectrix,

Involute and Spiral of Archimedes. - Parallel Curves. - Conchoid. - Quadratrix. - Cissoid. - Tractrix. - Witch of Agnesi. - Cartesian Ovals. - Cassian Ovals. - Catenary. - Logarith mic Spiral. - Hyperbolic Spiral. - Lituus, Ionic Volute.

Pages 39-78.

TINTING AND SHADING.
Brush Tinting, Flat and Graduated. - Masonry, Tiling, Wood Graining, River-Beds, etc., with brush alone, or in combined brush and line work.

$$
\text { Pages } 79-87
$$

the lettering of drawings.

Free-Hand Lettering. - Mechanical Expedients. - Proportioning of Titles. - Discussion of Forms. - Half- Block, Full Block and Railroad Types. - Borders and how to draw them. (Alphabets in Appendix).

Pages 88-96.
BLUE-PRINTING AND OTHER PROCESSES.
The Blue-print Process. - Photo-, and other Reproductive Graphic Processes, including Wood Engraving, Cerography, Lithography, Pbotolithography, Chromo-litbography, Photo-engraving, "Half-Tones," Photo-gravure and allied processes.-How to Prepare Drawings for Illustration.

Pages 97-1о3.
THIRD ANGLE PROJECTION. - WORKING DRAWINGS.
Projections and Intersections by the Third Angle Method. - The Development of Surfaces, for

Sheet Metal or Arch Constructions. - Working Drawings of Bridge Post Connection. - Strnctural Iron. - Spur Gearing (Approximate Involute Outlines). - Helical Springs, Rectangular and Circular Section. - Screws and Bolts (U. S. Standard), and Table of Proportions.

Pages 13 x - 180 .
AXONOMETRIC (INCLUDING ISOMETRIC) PROJECTION. - ONE - PLANE DESCRIPTIVE GEOMETRY.
Orthographic Projection upon a Single Plane. Axonometric Prajection. - General Fundamental Problem, inclinations known for two of the three axes.- Isometric Projection vs. Isometric Drawing. -Shadows on 1sometric Drawings. - Timber Framings and Arch Vonssoirs in Isometric View, -One-Plane Descriptive Geometry.

Pages 24T-247.

OBLIQUE PROJECTION.

Oblique or Clinographic Projection, Cavalier Perspective, Cabinet Projection, Military Perspective. - Applications to Timber Framings, Arch Voussoirs and Drawing of Crystals.

Pages 248-250.
APPENDIX.
Table of the Proportions of Washers. - Working Drawings of Standard $100-\mathrm{lb}$. Rail, and of Allen-Richardson Slide Valve. - Designs for Variation of Problems in Chapters X, XV and XVI. - Alphabets.

Pages 25t-268.

$\boldsymbol{C H A P T E R I I}$ I.

ARTISTIC AND TECHNICAL FREE-HAND DRAWING.-SKETCHING FROM MEASUREMENT.-FREEHAND LETTERING.-CONVENTIONAL REPRESENTATIONS.

20. Drawings, if classified as to the method of their production, are cither free-hand or mechanical;

Note Regarding the Non-consegutiveness of Page Numbers in this Work.

As already indicated in the preftee to this and each of the other "parts" or sections of the author's work entitled Theoretical and Pructical Graphics, the pages are printed from the plates of the large workthe most convenient armagement for teachers using the latter with chasses supplied with the different jarts, but prechuding, necessarily, the consecutiveness of page numbers throughout any one of the sections. This does not in the slightest degree affect the mity of either" part" when employed ats an independent work, its issue under separate cover having been contemplated and provided for when the large work was in preparation. For the convenience of any, however, who wish to assure themselves of the completeness of either volume in the series, this ship is inserted, containing the numbers of the pages of the large work that each section is intended to include. (See page preceding the title-page for Table of Contents of each section.)

No. 1. Pages \mathbf{j}^{-10}; 88-96; Alphabets, 1-61.
No. 2. Pages 1:31-180, and Appendix (6 pp .).
No. 3. Pages :39-78 and Apperdix.
No. 4. Pages $5-103 ; 131-180 ; 241-250 ;$ Appendix, inchuding Alphabets.
No. $\%$. Pages 219-240, and (after September, 1899) Supplement (8 pp.) (n Perspective of Reflections.

object. Yet to attain a sufficient degree of skill in it for all practical and commercial purposes is possible to all, and among them many who could never hope to produce artistic results. It is confined mainly to the making of working sketches, conventional representations and free-hand lettering, and the equipment therefor consists of a pencil of medium grade as to lardness; lettering pens-Falcon or Gillott's 303, with Niller Bros. "Carbon" pen No. 4; cither a note-book or a sketch-block or pad; also the following for sketching from measurement: a two-foot pocket-rule; calipers, both external and internal, for taking outside and inside diameters; a pair of pencil compasses for making an occasional circle too large to be drawn absolutely frec-hand; and a stecl tape-measure for large work, if one can have assistance in taking notes, but otherwise a long rod graduated to eighths.

TABLE OF CONTENTS

$\boldsymbol{C H A P T E R I I .}$

ARTISTIC AND TECHNICAL FREE-HAND DRAWING.-SKETCHING FROM MEASUREMENT.-FREEHAND LETTERING.-CONVENTIONAL REPRESENTATIONS.

20. Drawings, if classified as to the method of their production, are either free-hand or mechomieul; while as to purpose they may be working drawings, so fully dimensioned that they can be worked from and what they represent may be manufactured; or finished drawings, illustrative or artistic in character and therefore shaded either with pen or brush, and having no hidden parts indicated by dotted lines as in the preceding division. Finished drawings also lack figured dimensions.

Working drawings of parts or "details" of a structure are called detril drowings; while the representation of a structure as a whole, with all its details in their proper relative position, hidden parts indicated by dotted lines, etc., is termed a generd or assembly drawing.
21. While mechanical drawing is involved in making the various essential views-plans, elevations and sections- of all engineering and architectural constructions, and in solving the problems of form and relative position arising in their design, yet, to the engineer, the ability to sketeh effectively and rapidly, free-hond, is of seareely less importance than to handle the drawing instruments skillfully; while the success of an architect depends in still greater measure upon it.

We must distinguish, however, between artistic and technical free-hand work. The architect must be master of both; the engineer necessarily only of the latter.

To secure the adoption of his designs the architect relies largely upon the effective way in which he can finish, either with pen and ink or in water-colors, the perspectives of exterior and interior views; and such drawings are judged mainly from the artistic standpoint. While it is not the province of this treatise to instruct in such work a word of suggestion may properly be introduced for the student looking forward to arehitecture as a profession. He should procure Linfoot's Picture Making in Pen und Ink, Miller's Essentials of Perspective and Delanotte's Art of Sketching from Nature; and with an experienced architect or artist, if possible, but otherwise by himself, master the principles and act on the instructions of these writers.
22. Since the camera makes it, fortunately, no longer essential that a civil engineer should be a landscape artist as well, his free-hand work has become more restricted in its scope and more rigid in its character, and like that of the machine designer it may properly be called technicul, from its object. Yet to attain a sufficient degree of skill in it for all practical and commercial purposes is possible to all, and among them many who could never hope to produce artistic results. It is confined mainly to the making of working sketches, conventional representations and free-hand lettering, and the equipment therefor consists of a pencil of medium grade as to hardness; lettering pens-Falcon or Gillott's 303, with Miller Bros. "Carbon" pen No. 4; either a note-book or a sketch-block or pad; also the following for sketehing from measurement: a two-foot pocket-rule; calipers, both external and internal, for taking outside and inside diameters; a pair of pencil eompasses for making an oceasional cirele too large to be drawn absolutely free-hand; and a steel tape-measure for large work, if one can have assistance in taking notes, but otherwise a long rod graduated to eighths.
23. In the evolution of a machine or other engineering project the designer places his ideas on paper in the form of rough and mainly free-hand sketches, beginning with a general outline, or "skeleton" drawing of the whole, on as large a scale as possible, then filling in the details, separate —and larger-drawings of which are later made to exact scale. While such preliminary sketches are not drawn literally "to scale" it is obviously desirable that something like the relative proportions should be preserved and that the closer the approximation thereto the elearer the idea they will give to the draughtsman or workman who has to work from them. A habit of close observation must therefore be eultivated, of amalys of form and of relative direction and proportion, by all who would succeed in draughting, whether as designers or merely as copyists of existing constructions. While the beginner belongs necessarily in the latter eategory he must not forget that his aim should be to place himself in the ranks of the former, both by a thorough mastery of the fundamental theory that lies back of all correct design and ly such training of the hand as slall facilitate the graphic expression of his icleas. To that end he should improve every opportunity to put in practice the following instructions as to

SKETCIING FROM MEASUREMENT,

as each structure sketched and measured will not only give excreise to the hand but also prove a valuable object lesson in the proportioning of parts and the modes of their assemblage.

A free-hand sketch may be as good a working drawing as the exactly scaled-and usually mked-drawing that is generally made from it to be sent to the shop.

While several views are usually required, yet for oljects of not too complicated form, and whose lines lie mainly in mutually perpendicular directions, the method of representation illustrated by Fig. 7, is admirably adapted,* and obviates all necessity for additional sketches. It is an oblique projection Fig. 7.

(Art. 17) the theory of whose construction will be found in a subsequent chapter, but with regard to which it is suffieient at this point to say that the right angles of the front face are seen in their true form, while the other right angles are shown either of $30^{\circ}, 60^{\circ}$, or 120°; although almost any oblique angle will give the same general effect and may be adopted. Lines parallel to each other on the object are also parallel in the drawing.

Draw first the front face, whose angles are seen in their true form; then run the oblique lines off in the direction which will give the best riew. (Refer to Figs. 42, 44, 45 and 46.)
24. While Fig. 7 gives almost the pictorial effect of a true perspective and the object requires no other description, yet for complicated and irregular forms it gives place to the plan-and-elevation mode of representation, the plan being a top and the elevation a front view of the object. And

[^0]if two views are not enough for clearness as many more should be added as seem neeessary, ineluding what are ealled sections, which represent the object as if cut apart by a plane, separated and a view obtained perpendicular to the cutting plane, showing the internal arrangement and shape of parts.

In Fig. 8 we have the same object as in Fig. 7, but represented by the method just mentioned. The front view (elevation) is evidently the same in both Figs. 7 and 8, except that in the latter we indicate by dotted lines the hidden reeess which is in full sight in Fig. 7.

The view of the top is placed at the top in conformity to the now quite general practice as to location, viz., grouping the various sketches about the elevation, so that the view of the left end is at the left, of the right at the right, etc.

In these riews, which fall under Art. 19 as to theoretical construction, entire surfaces are projected as straight lines, as $G B C H$ in the straight line $H^{\prime} C^{\prime}$. Were this a metallic surface and "finished" or "machined" to smoothness, as distinguished from the surface of a rough easting, that fact would be denoted by an " f " on the line $H^{\prime} C^{\prime}$ which represents the entire surface, the crossline of the " f " eutting the line obliquely, as shown.

> CENTRE-LINES. - DIMENSIONING.
25. Dimensioning. In sketching, centre-lines and all important centres should be located first, and measurements taken from them or from finished surfaces.

Feet and inches are abbreviated to "Fr.," and "In.," as 4 Fr. $6 \frac{3}{8} I_{\text {r.: }}$ also written $4^{\prime} 6 \frac{3}{8} "$, and oceasionally 4 Fr. $6 \frac{3}{3 \prime}$. A dimension should not be written as an improper fraction, $\frac{13}{8 \prime \prime}$ for example, but as a mixed number, $1 \frac{5}{8}{ }^{\prime \prime}$. Fractions should have horizontal dividing lines.

Not only should dimensions of suceessive parts be given but an "over-all" dimension, which, itneed hardly be said, should sustain the axiom regarding the whole and the sum of its parts.

Dimensions should read in line with the line they are on, and either from the bottom or the right hand.

The arrow tips should touch the lines between which a distance is given.

Extension lines should be drawn and the dimension given outside the drawing whenever such course will add to the clearness. (See $D^{\prime} F^{\prime}$, Fig. 8.)

An opening should always be left in the dimension line for the figures.
In case of very small dimensions the arrow tips may be located outside the lines, as in Fig. 9, and the dimension indicated by an arrow, as at A, or inserted as at B if there is room.

Should a piece of uniform cross-section (as, for example, a rail, angle-iron, channel bar, Phœenix column or other form of structural iron) be too long to be represented in its proper relative length on the sketch it may be broken as in Fig. 9, and the form of the section (which in the case supposed will be the same as an end view) may be inserted with its dimensions, as in the shaded figure. If the kind of bar and the number of pounds per yard are known the dimensions ean be obtained by reference to the handbook issued by the manufacturers.

The same dimension should not appear on each riew, but each dimension must be given at least once on some view.

Notes on Riveted Work, Pins, Bolts, Screus ind Nuts. In riveted work the "piteh" of the rivets, i. e., their distance from centre to centre ("c. to c.") should be noted, as also that between centre lines or rows, and of the latter from main centre lines. Similarly for bolts and holes. If the latter are located in a circle note the diameter of the circle containing their centres. Note that a hole for a rivet is usually about one-half the diameter of the forged head.

In measuring nuts take the width between parallel sides ("width across the flats") and abbreviate for the shape, as "sq.," "hex.," "oct."

For a piece of cylindrical shape a frequently used symbol is the eirele, as 4 " O (read "four inches, round," not around,) for $4^{\prime \prime}$ diameter; but it is even elearer to use the abbreviation of the latter word, viz., "diam."

In taking notes on bolts and screws the outside diameter is sufficient if they are "standard," that is, proportioned after either the Sellers (U. S. Standard) or Whitworth (English Standard) systems, as the proportions of heads and nuts, number of threads to the ineh, ete., can be obtained from the tables in the Appendix. If not "standard" note the number of threads to the inch. Record whether a screw is right- or left-handed. If right-handed it will advance if turned clock-wise. The shape of thread, whether triangular or square, would also be noted.

Notes on Gearing. On cog, or "gear," wheels obtain the distance between centres and the number of teeth on each wheel. The remaining data are then obtained by calculation.

Bridge Notes. In taking bridge notes there would be required general sketehes of front and end view; of the flooring system, showing arrangement of tracks, ties, guard-beam and side-walk; a cross-scetion; also detail drawings of the top and foot of each post-connection in one longitudinal line from one end to the middle of the structure. In case of a double-traek bridge the outside rows of posts are alike but differ from those of the middle truss.

All notes should be taken on as large a seale as possible, and so indexed that drawings of parts may readily be understood in their relation to the whole.

The foregoing hints might be considerably extended to embrace other and special cases, but experience will prove a sufficient teacher if the student will act on the suggestions given, and will remember that to get an excess of data is to err on the side of safety. It need hardly be added that what has preceded is intended to be merely a partial summary of the instructions which would be given in the more or less brief practice in technical sketching which, presumably, constitutes a part of every course in Graphies; and that unless the draughtsman can be under the direction of a teacher he will be able to sketch much more intelligently after studying more of the theory involved in Mechanical Drawing and given in the later pages of this work.

CONVENTIONAL REPRESENTATIONS.

26. Conventional representations of the natural features of the country or of the materials of construction are so called on the assumption, none too well founded, that the engineering profession

Fㅗㅗㄷㅡ․

has agreed in convention that they shall indicate that which they also more or less resemble. While there is no universal agreement in this matter there is usually but little ambiguity in their use, especially in those that are drawn free-hand, since in them there can be a nearer approach to the natural appearance. This is well illustrated by Figs. 10 and 11.

$$
\text { Fise } 11 .
$$

In addition to a rock section Fig. 11 (a) shows the method of indicating a mud or sand bed with small random boulders.

Water cither in section or as a receding surface may be shown by parallel lines, the spaccs between them increasing gradually.

Conventional representations of wood, masonry and the metals will be found in Chapter VI, after hints on coloring have been given, the foregoing figures appearing at this point merely to illustrate, in black and white, one of the important divisions of technical free-hand work. Those, however, who have already had some practice in drawing may undcrtake them either with pen and ink or in colors, in the latter case observing the instructions of Arts. 237-241 for wood, while for the river
sections they may employ burnt umber undertone for the earthy bed，pale blue or india ink tint for the rock，and prussian blue for the water lines．

FREE－HAND LETTERING．
27．Although later on in this work an entire chapter is devoted to the subject of lettering，yet at this point a word should be said regarding those forms of letters which ought to be mastered， early in a draughting course，as the most serviccable to the practical worker．

$$
\text { Fig. } 12 .
$$

ABCDEFGHIJKLMNOPRRSTUVWXYZ\＆ 1234567890

ABCDEFGHIJKLMNOPQRSTUVWXYZ \＆ 1234567890

The first，known as the Gothic，is the simplest form of letter，and is illustrated in both its vertical and inclined（or Italic）forms in Fig．12．It is much used in dimensioning，as well as for

Fig 12 （a）．titles．The lettering and numerals are Gothie in Figs． 7 and 8，with the exception 0356 of the 1 and 4 ，which，by the addition of feet，are no longer a pure form although enhanced in appearance．

In Fig． 12 （a）some modifications of the forms of certain numerals are shown； also the omission of the dividing line in a mixed number，as is customary in some offices．

For Gothic letters and for all others in which there is to be no shading it is well to use a pen with a blunt end，preferably＂ball－pointed，＂but otherwise a medium stub，like Miller Bros＇．＂Carbon＂ No．4，which gives the desired result when used on a smooth surface and without undue pressure．

Fig． 13 illustrates the Italic（or inclined）form of a letter which when vertical is known as the Roman．The Roman and Italic Roman are much used on Government and other map work，and in

$$
\begin{aligned}
& \text { Fis. } 13 . \\
& A B C D E F G H I J K L M N O P Q R S \\
& 12345 \quad T U V W X Y Z \quad 67890 \\
& a b \text { сdefghijれたmпорqrstuvw ョ у Z }
\end{aligned}
$$

the draughting offices of many prominent mechanical engineers．Regarding them the student may profitably read Arts．260－262．Make the spaces between letters as nearly uniform as possible，and the small letters usually about three－fifths the height of the capitals in the same line．

For Roman and other forms of letter requiring shading use a fine pen；Gillott＇s No． 303 for small work，and a＂Falcon＂pen for larger．

A form of letter much used in Europe and growing in favor here is the Soennechen Round Writing，referred to more particularly in Art． 265 and illustrated by a complete alphabet in the Appendix．The text－book and special pens required for it can be ordered through any dealer in draughtsmen＇s supplies．

CHAPTER III.

DRAWING INSTRUMENTS AND MATERIALS.-INSTRUCTIONS AS TO USE.-GENERAL PRELIMINARIES AND TECHNICALITIES.
28. The draughtsman's equipment for graphical work should be the best consistent with his means. It is mistaken economy to buy inferior instruments. The best obtainable will be found in the end to have been the cheapest.

The set of instruments illustrated in the following figures contains only those which may be considered absolutely essential for the beginner.

THE DRAWING PEN.

The right line pen (Fig. 14) is ordinarily used for drawing straight lines, with either a rule or triangle to guide it; but it is also employed for the drawing of curves, when directed in its motion by curves of wood or hard rubber. For average work a pen about five inches long is best.

The figure illustrates the most approved type, i. e., made from a single piece of steel. The distance between its points, or "nibs," is adjustable by means of the screw H. An older form of pen has the outer blade connected with the inner by a hinge. The convenience with which such a pen may be cleaned is more than offset by the certainty that it will not do satisfactory work after the joint has become in the slightest degree loose and inaccurate through wear.
29. If the points wear unequally or become blunt the draughtsman may sharpen them readily himself upon a fine oil-stone. The process is as follows:

Screw up the blades till they nearly touch. Incline the pen at a small angle to the surface of the stone and draw it lightly from left to right (supposing the initial position as in Fig. 16). Before reaching the right
 end of the stone, begin turning the pen in a plane perpendicular to the surface, and draw in the opposite direction at the same angle. After frequent examination and trial, to see that the blades have become equal in length and similarly rounded, the process is completed by lightly dressing the outside of each blade scparately upon the stone. No grinding should be donc on the inside of the blade. Any "burr" or rough edge resulting from the operation may be removed with fine emery
 paper. For the best results, obtained in the shortest possible time, a magnifying glass should be used. The student should take particular notice of the shape of the pen when new, as a standard to be aimed at when compelled to act on the above suggestions.
30. The pen may be supplied with ink by means of an ordinary writing pen dipped in the ink and then passed between the blades; or by using in the same manner a strip of Bristol board about a quarter of an inch in width. Should any fresh ink get on the outside of the pen it must
be removed; otherwise it will be transferred to the edge of the rule and thence to the paper, caus ing a blot.
31. As with the pencil, so with the pen, horizontal lines are to be drawn from left to right, while vertical or inclined lines are drawn either from or toward the worker, according to the position of the guiding edge with respect to the line to be drawn. If the line were $m n$, Fig. 17, the motion would be away from the draughtsman, i. e., from n toward m; while o p would be drawn toward the worker, being on the right of the triangle.
32. To make a sharply defined, clean-cut line-the only kind allowable-the pen should be held lightly but firmly, with one blade resting against the guiding edge, and with both points resting equally upon the paper, so that they may wear at the same rate.

Fis. 17.

33. The inclination of the pen to the paper may best be about 70°. When properly held, the pen will make a line about a fortieth of an inch from the edge of the rule or triangle, leaving visible a white line of the paper of that width. If, then, we wish to connect two points by an inked straight line, the rule must be so placed that its edge will be from them the distance indicated.

It need hardly be said that a drawing-pen should not be pushed.
The more frequently the draughtsman will take the trouble to clean out the point of the pen and supply fresh ink, the more satisfactory results will he obtain. When through with the pen clean it carefully, and lay it away with the points not in contact. Equal care should be taken of all the instruments, and for cleaning them nothing is superior to chamois skin.

dividers.

34. The hair-spring dividers (Fig. 15) are employed in dividing lines and spacing off distances, and are capable of the most delicate adjustment by means of the screw G and spring in one of the legs. When but one pair of dividers is purchased the kind illustrated should have the preference over plain dividers, which lack the spring. It will, however, be frequently found convenient to have at hand a pair of each. Should the joint at F become loose through wear it can be tightened by means of a key having two projections which fit into the holes shown in the joint.
35. In spacing off distances the pressure exerted should be the slightest consistent with the location of a point, the puncture to be merely in the surface of the paper, and the points determined by lightly peneilled circles about them, thus along a line, all the ares described by one Fes. 1e. leg of the dividers should be on the same side of the line. Thus, in Fig. 19, with b the first centre of turning, the leg x describes the

are R, then rests and pivots on c while the $\operatorname{leg} y$ describes the are $S ; x$ then traces are T, etc.
36. The compasses (Fig. 20) resemble the dividers in form and may be used to perform the same office, but are usually employed for the drawing of circles. Unlike the dividers one or both of the

Compass set.
Fie. 20. Fig. zi. Fien 20.
 legs of compasses are detachable. Those illustrated have one permanent leg, with pirot or "needle-point" adjustable by means of screw R. The other leg is detachable by turning the serew O, when the pen leg $L M$ (Fig. 21) may be inserted for ink work; or, where large work is involved, the lengthening bar on the right (Fig. 22) may be first attached at O, and the pencil or pen leg then inserted at I. The metallic point held by scerew S is usually replaced by a hard lead, sharpened as indicated in Art 54.
37. When in use, the legs should be bent at the joints P and L, so that they will be perpendicular to the paper when the compasses are held in a vertical plane. The turning may be in either direction, but is usually "clock-wise;" and the compasses may be slightly inclined toward the direction of turning. When so used, and if no undue pressure be exerted on the pirot leg, there should be but the slightest puncture at the centre, while the pen points having rested equally upon the paper have sustained equal wear, and the resulting line has been sharply defined on both sides. Obviously the legs must be re-adjusted as to angle, for any material change in the size of the circles wanted.

The compasses should be held and turned by the milled head which projects above the joint N.

Dividers and compasses should open and shut with an absolutely uniform motion, and somewhat stiffly.

BOW-PENCIL AND PEN.
38. For extremely accurate work, in diameters from one-sixteenth of an inch to about two inches, the bow-pencil (Fig. 23) and bow-pen (Fig. 24) are especially adapted. The pencil-bow has a needle-point, adjustable by means of screw E, which gives it a great advantage over the fixed pivot-point of the bow-pen, not alone in that it permits of more delicate adjustment for unusually small work, but also because it can be easily replaced by a new one in ease of damage; whereas an injury to the other renders the whole instrument useless. For very small circles the needle-point should project very slightly beyond the penpoint; theoretically, by only the extremely small distance the needlepoint is expected to sink into the paper.

The spring of either bow should be strong; otherwise an attempt at a circle will result in a spiral.

It will save wear upon the threads of the milled heads A and C if the draughtsman will press the legs of the bow together with his left hand and run the head up loosely on the serew with his right.

39. To the above described-which we may call the minimum set of instruments-might be advantageously added a pair of bow-spacers (small dividers shaped like Fig. 24); beam-compasses, for extra large circles; parallel-rule; proportional dividers, and an extra-and larger-right-line pen.
40. The remainder of the necessary equipment consists of paper; a drawing-board; T-rule; triangles or "set squares;" seales; pencils; India ink; water colors; saucers for mixing ink or colors; brushes; water-glass and sponge; irregular (or "French") curves; india rubber; erasing knifc; protractor; file for sharpening pencils, or a pad of fine emery or sand paper; thumb-tacks (or "drawingpins"); horn centre, for making a large number of concentric circles.

PAPER AND TRACING CLOTH.
41. Drawing paper may be purchased by the shect or roll, and either unmounted or mounted, i. e., "backed" by muslin or heary card-board. Smooth or "hot-pressed" paper is best for drawings in line-work only; but the rougher surfaced, or "cold-pressed," should always be employed when brush-work in ink or colors is involved: in the latter case, also, either mounted paper should be used or the sheets "stretched" by the process described in Art. 44.
42. The names and sizes of shects are:-

Cap 13×17
Demi 15×20
Medium 17×22
Royal 19×24
Super Royal 19×27

Elephant 23×28
Atlas 26×34
Columbia 23×35
Double Elephant 27×40
Antiquarian 31×53

Imperial 22×30
43. There are many makes of first-class papers, but the best known and still probably the most used is Whatman's. The draughtsman's choice of paper must, however, be determined largely by the valuc of the drawing to be made upon it, and by the probable usage to which it will be subjected.

Where several copies of one drawing were desired it has been a general practice to make the original, or "construction". drawing, with the pencil, on paper of medium grade, then to lay over it a shcet of tracing-cloth, and copy upon it, in ink, the lines underneath. Upon placing the tracing cloth over a sheet of sensitized paper, exposing both to the light and then immersing the sensitive paper in water, a copy or print of the drawing was found upon the shect, in white lines on a blue ground-the well-known blue-print. The time of the draughtsman may, however, be cconomized, as also his purse, by making the original drawing in ink upon Crane's Bond paper, which combines in a remarkable degree the qualities of transparency and toughness. About as clear bluc-prints can be made with it as with tracing-cloth, yet it will stand severe usage in the shop or the drafting-room.

Better papers may yet be manufactured for such purposes, and the progressive draughtsman will be on the alert to avail himself of these as of all genuine improvements upon the materials and instruments before employed.
44. To stretch paper tightly upon the board, lay the sheet right side up,* place the long rule with its edge about one-half inch back from each edge of the paper in turn, and fold up against it a margin of that width. Then thoroughly dampen the back of the paper with a full sponge, except on the folded margins. Turning the paper again face up gum the margins with strong mucilage or glue, and quickly but firmly press opposite edges down simultaneously, long sides first, excrting at the same time a slight outward pressure with the hands to bring the paper down somewhat closer to

[^1]the board. Until the gum "sets," so that the paper adheres perfectly where it should, the latter should not shrink; hence the necessity for so completely soaking it at first. The sponge may be applied to the face of the paper provided it is not rubbed over the surface, so as to damage it. The stretch should be horizontal when drying, and no excess of water should be left standing on the surface; othcrwise a water-mark will form at the edge of each pool.
45. When tracing-cloth is used it must be fastened smoothly, with thumb-tacks, over the drawing to be copied, and the ink lining done upon the glazed side, any brush work that may be required either in ink or colors-being always done upon the dull side of the cloth after the outlining has been completed.

If the glazed surface be first dusted with powdered pipe-clay, applied with chamois skin, it will take the ink much more readily.

When erasure is nccessary use the rubber, after which the surface may be restored for further pen-work by rubbing it with soapstone.

Tracing-cloth, like drawing paper, is most convenient to work upon if perfectly flat. When either has been purchased by the roll it should therefore be cut in sheets, and laid away for some time in drawers to become flat before needed for use.

DRAWING BOARD.

46. The drawing board should be slightly larger than the paper for which it is designed, and of the most thoroughly seasoned material, preferably some soft wood, as pine, to facilitate the use of the drawing-pins or thumb-tacks. To prevent warping it should have battens of hard wood dovetailed into it across the back, transversely to its length. The back of the board should be grooved longitudinally to a depth equal to half the thickness of the wood, which weakens the board transversely and to that degree facilitates the stiffening action of the battens.

For work of moderate size, on stretched paper, yet without the use of mucilage, the "panel" board is recommended, provided that both frame and panel are made of the best seasoned hard wood.

It will be found convenient for each student in a technical school to possess two boards, one $20^{\prime \prime} \times 28^{\prime \prime}$ for paper of Super Royal size, which is suitable for much of a beginner's work, and another $28^{\prime \prime} \times 41^{\prime \prime}$ for Double Elephant sheets (about twice Super Royal size), which are well adapted to large drawings of machinery, bridges, etc. A large board may of course be used for small sheets, and the expense of getting a second board avoided; but it is often a great convenience to have a mediumsized board, especially in case the student desires to do some work outside the draughting-room.

THE T-RULE.
47. The T-rule should be slightly shorter than the drawing board. Its head and blade must have absolutely straight edges, and be so rigidly combined as to admit of no lateral play of the latter in the former. The head should also be so fastened to the blade as to be level with the surface of the board. This permits the triangles to slide frecly over the head, a great convenience when the lines of the drawing run close to the edge of the paper. (See Fig. 32.)

The head of the T-rule should always be used along the left-hand edge of the drawing board. triangles.
48. Triangles, or "set-squares" as they are also called, can be obtained in various materials, as hard rubber, celluloid, pear-wood, mahogany and steel; and either solid (Fig. 25) or open (Fig. 26). The open triangles are preferable, and two are required, one with acute angles of 30° and 60°, the other with 45° angles. Hard rubber has an advantage over metal or wood, the latter being likely to warp and the former to rust, unless plated. Celluloid is transparent and the most cleanly of all.

The most frequently recurring problems involving the use of the triangles are the following：－

49．To draw parallel lines place either of the edges against another triangle or the T－rule．If then moved along，in either direction，each of the other edges will take a series of parallel positions．
，50．To draw a line perpendicular to a given line， place the hypothenuse of the triangle， $0 a$ ，（Fig．26）， so as to coincide with or be parallel to the given

line；then a rule or another triangle against the base．By then turning the triangle so that the other side，o c ，of its right angle shall be against the rule，as at $o_{1} c_{1}$ ，the hypothenuse will be found perpendicular to its first position and therefore to the given line．

51．To construct regular hexagons place the shortest side of the 60° triangle against the rule（Fig．27）if two sides are to be horizontal，as $f e$ and $b c$ of hexagon H ．For vertical sides，as in H^{\prime} ，the position of the triangle is evident．By making $a b$ indefinite at first，and knowing $b c-$ the length of a side，we may obtain a by an are，centre b ，radius $b c$ ．

If the inscribed circles were given，the hexagons might also be obtained by drawing a series of tangents to the circles，with the rule and triangles in the positions indicated．

THE SCALE．

52．But rarely can a drawing be made of the same size as the object，or＂full－size，＂as it is called；the lines of the drawing，therefore，usually bear a certain ratio to those of the object．This ratio is called the seale，and should invariably be indicated．

If six inches on the drawing represent one foot on the object，the scale is one－half and might be variously indicated，thus：SCALE $\frac{1}{2}$ ；SCale 1：2；SCALE 6 IN．$=1$ FT．SCALE $6^{\prime \prime}=1^{\prime}$ ．

At one foot to the inch any line of the drawing would be one－twelfth the actual size，and the fact indicated in either of the ways just illustrated．

Although it is a simple matter for the draughtsman to make a seale for himself for any par－ ticular case，yet scales can be purchased in great variety，the most serviceable of which for the usual range of work is of box－wood， $12^{\prime \prime}$ long，（or $18^{\prime \prime}$ ，if for large work）of the form illustrated by Fig．
 28，and graduated $\frac{3}{32}: \frac{3}{16}: \frac{1}{8}: \frac{1}{4}: \frac{3}{8}: \frac{1}{2}: \frac{3}{4}: 1: 1 \frac{1}{2}: 3$ inches to the foot．This is known as the architect＇s scale，in contradistinction to the engineer＇s，which is decimally graduated．It will，however，be frequently convenient to have at hand the latter as well as the former．
When in use it should be laid along the line to be spaced，and a light dot made upon the干゙ロー 20 ．

paper with the pencil，opposite the proper division on the graduated edge．A distance should rarely
be transferred from the scale to the drawing by the dividers, as such procedure damages the scale if not the paper.
53. For special cases diagonal scales can readily be constructed. If, for example, a scale of 3 inches to the foot is needed and measuring to fortieths of inches, draw cleven equidistant, parallel lines, enclosing ten equal spaces, as in Fig. 29, and from the end A lay off $A B, B C$, etc., each 3 inches and representing a foot. Then twelve parallel diagonal lincs in the first space intercept quarter-inch spaces on $A B$ or $a b$, each representative of an inch. There being ten equal spaces between B and b, the distance $s x$, of the diagonal $b m$ from the vertical $b B$, taken on any horizontal line $s x$, is as many tenths of the space $m B$ as there are spaces between $s x$ and $b ; s i x$, in this case. The principle of construction may be generalized as follows:-

The distance apart of the vertical lines represents the units of the scale, whether inches, feet, rods or miles. Except for decimal graduation divide the left-hand space at top and bottom into as many spaces as there are units of the next lower denomination in one of the original units (feet, for yards as units; inches in case of feet, etc.). Join the points of division by diagonal lines; and, if $\frac{1}{x}$ is the smallest fraction that the scale is designed to give, rule $x+1$ equidistant horizontal lines, giving x equal horizontal spaces. The scale will then read to $\frac{1}{x}$ th of the intermediate denomination of the scale.

When a scale is properly used, the spaces on it which represent feet and inches are treated as if they were such in fact. On a scale of one-eighth actual size the edge graduated $1 \frac{1}{2}$ inches to the foot would be employed; each $1 \frac{1}{2}$ inch space on the scale would be read as if it were a foot; and ten inches, for example, would be ten of the eighth-inch spaces, each of which is to represent an inch of the original line being scaled. The usual error of beginners would be to divide each original dimension by eight and lay off the result, actual size. The former method is the more expeditious

THE PENCILS.

54. For construction lines afterward to be inked the pencils should be of hard lead, grade 6 H if Fabers or VVH if Dixon's. The pencilling should be light. It is easy to make a groove in the paper by exerting too great pressure when using a hard lead. The hexagonal form of pencil is usually indicative of the finest quality, and has an advantage over the cylindrical in not rolling off when on a board that is slightly inclined.

Somewhat softer pencils should be used for drawings afterward to be traced, and for the preliminary free-hand sketches from which exact drawings are to be made; also in free-hand lettering.

Sharpen to a chisel edge for work along the edges of the T-rule or triangles, but use another pencil with coned point for marking off distances with a scale, locating centres and other isolated points, and for free-hand lettering; also sharpen the compass leads to a point. Use the knife for cutting the wood of the pencil, beginning at least an inch from the end. Leave the lead exposed for a quarter of an inch and shape it as desired, either with a knive or on a fine file, or a pad of emery paper.

THE INK.
55. Although for many purposes some of the liquid drawing-inks now in the market, particularly Higgins', answer admirably, yet for the best results, cither with pen or brush, the draughtsman should mix the ink limself with a stick of India-or, more correctly, China ink, selecting one of the higher-priced cakes, of rectangular cross-section. The best will show a lustrous, almost iridescent fracture, and will have a smooth, as contrasted with a gritty feel when tested by rubbing the moistened finger on the end of the cake.

Sets of saucers, called "nests," designed for the mixing of ink and colors, form an essential part of an equipment. There are usually six in a set, and so made that each answers as a cover for the one below it. Placing from fifteen to twenty drops of water in one of these, the stick of ink should be rubbed on the saucer with moderate pressure.

To properly mix ink requires great patience, as with too great pressure a mixture results having flakes and sand-like particles of ink in it, whereas an absolutely smooth and rather thick, slowflowing liquid is wanted, whose surface will reflect the face like a mirror. The final test as to sufficiency of grinding is to draw a broad line and let it dry. It should then be a rich jet black, with a slight lustre. The end of the cake must be carefully dried on removing it from the saucer, to prevent its flaking, which it will otherwise invariably do.

One may say, almost without qualification, and particularly when for use on tracing-cloth, the thicker the ink the better; but if it should require thinning, on saving it from one day to anotherwhich is possible with the close-fitting saucers described-add a few drops of water, or of ox-gall if for use on a glazed surface.

When the ink has once dried on the saucer no attempt should be made to work it up again into solution. Clean the saucer and start anew.

WATER COLORS.

56. The ordinary colored writing inks should never be used by the draughtsman. They lack the requisite "body" and are corrosive to the pen. Very good colored drawing inks are now manufactured for line work, but Winsor and Newton's water colors, in the form called "moist," and in "half-pans," are the best if not the most convenient, for color work either with pen or brush. Those most frequently employed in engineering and architectural drawing are Prussian Blue, Carmine, Light Red, Burnt Sienna, Burnt Umber, Vermilion, Gamboge, Yellow Ochre, Chrome Yellow, Payne's Gray and Sepia. For some of their special uses see Art. 73.

Although hardly properly called a color, Chinese White may be mentioned at this point as a requisite, and obtainable of the same form and make as the colors above.

DRAWING-PINS.
57. Drawing-pins or thumb-tacks, for fastening paper upon the board, are of various grades, the best, and at present the cheapest, being made from a single disc of metal one-half inch in diameter, from which a section is partially cut, then bent at right angles to the surface, forming the point of the pin.

IRREGULAR CURVES.

58. Irregular or French curves, also called sweeps, for drawing non-circular arcs, are of great variety, and the draughtsman can hardly have too many of them. They may be either of pear Fis. 30 .
 wood or hard rubber. A thoroughly equipped draughting office will have a large stock of these curves, which may be obtained in sets, and are known as railroad curves, ship curves, spirals, ellipses, hyperbolas, parabolas and combination curves. Some very serviceable flexible curves are also in the market.

If but two are obtained (which would be a minimum stock for a beginner) the forms shown in Fig. 30 will probably prove as serviceable as any. When employing them for inked work the pen should be so turned, as it advances, that its blades will maintain the same relation (parallelism) to the edge of the guiding curve as they ordinarily do to the edge of
the rule. And the student must content himself with drawing slightly less of the curve than might apparently be made with one setting of the sweep, such course being safer in order to avoid too close an approximation to angles in what should be a smooth curve. For the same reason, when placed in a new position, a portion of the irregular curve must coincide with a part of that last inked.

The pencilled curve is usually drawn free-hand, after a number of the points through which it should pass have been definitely located. In sketching a curve free-hand it is much more naturally and smoothly done if the hand is always kept on the concave side of the curve.

INDIA RUBBER.

59. For erasing pencil-lines and cleaning the paper india rubber is required, that known as "velvet" being recommended for the former purpose, and either "natural" or "sponge" rubber for the latter. Stale bread crumbs are equally good for cleaning the surface of the paper after the lines have been inked, but will damage pencilling to some extent.

One end of the velvet rubber may well be wedge-shaped in order to exase lines without damaging others near them.

INK ERASER.
60. The double-edged erasing knife gives the quickest and best results when an inked line is to be removed. The point should rarely be employed. The use of the knife will damage the paper more or less, to partially obviate which rub the surface with the thumb-nail or an ivory knife handle.

protractor.

61. For laying out angles a graduated arc called a "protractor" is used. Various materials are employed in the manufacture of protractors, as metal, horn, celluloid, Bristol board and tracing paper. The two last are quite accurate enough for ordinary purposes, although where the utmost precision is required, one of German silver should be obtained, with a moveable arm and vernier attachment.

The graduation. may advantageously be to half degrees for average work.

To lay out an angle (say 40°) with a protractor, the radius $C H$ (Fig. 31) should
 be made to coincide with one side of the desired angle; the centre, C, with the desired vertex; and a dot made with the pencil opposite division numbered 40 on the graduated edge. The line $M C$, through this point and C, completes the construction.

BRUSHES.
62. Sable-hair brushes are the best for laying flat or graduated tints, with ink or colors, upon small surfaces; while those of camel's hair, large, with a brush at each end of the handle, are better adapted for tinting large surfaces. Reject any brush that does not come to a perfect point on being moistened. Five or six brushes of different sizes are needed.

PRELIMINARIES TO PRACTICAL WORK.

63. The first work of a draughtsman, like most of his later productions, consists of line as distinguished from brush work, and for it the paper may be fastened upon the board with thumb-tacks only.

There is no universal standard as to size of sheets for drawings. As a rule each draughting office has its own set of standard sizes, and system of preserving and indexing. The columns of the various engineering papers present frequent notes on these points, and the best system of preserving and recording drawings, tracings and corrections is apparently in process of evolution. For the student the best plan is to have all drawings of the same size bound in neat but permanent form at the end of the course. The title-pages, which presumably have also been drawn, will sufficiently distinguish the different sets.
64. In his elementary work the student may to advantage adopt two sizes of sheets which are considerably employed, $9^{\prime \prime} \times 13^{\prime \prime}$, and its double, $13^{\prime \prime} \times 18^{\prime \prime}$; sizes into which a "Super Royal" sheet naturally divides, leaving ample margins for the mucilage in case a "stretch" is to be made.

A "Double Elephant" sheet, being twice the size of a "Super Royal," divides equally well into plates of the above size, but is preferable on account of its better quality.

To lay out four rectangles upon the paper, locate first the centre (see Fig. 32) by intersecting diagonals, as at O. These should not be drawn entirely across the sheet, but one of them will necessarily pass a short distance each side of the point where the centre lies-judging by the eye alone; the second definitely determines the point. If the T-rule will not reach diagonally from corner to corner of the paper (and it usually will not), the edge may be practically extended by placing a triangle against but projecting beyond it, as in the upper lefthand portion of the figure.

The T-rule being placed as shown, with its head at the left end of the board-the correct and usual position -draw a horizontal line $X Y$, through the centre just located. The vertical centre line is then to be drawn, with one of the triangles placed as shown

Fis. ヨ2.
 in the figure, i. e., so that a side, as $m n$ or $t r$, is perpendicular to the edge.

It is true that as long as the edges of the board are exactly at right angles with each other, we might use the T-rule altogether for drawing mutually perpendicular lines. This condition being, howerer, rarely realized for any length of time, it has become the custom - a safe one, as long as rule and triangle remain "true"-to use them as stated.

The outer rectangles for the drawings (or "plates," in the language of the technical school) are completed by drawing parallels, as $J N$ and $Y N$, to the centre lines, at distances from them of $9^{\prime \prime}$ and $13^{\prime \prime}$ respectively, laid off from the centre, O.

An inner rectangle, as $a b c d$, should be laid out on each plate, with proper margins; usually at least an inch at the top, right and bottom, and an extra half inch on the left as an allowance for binding. These margins are indicated by x and z in the figure, as variables to which any convenient values may be assigned. The broad margin x in the upper rectangle will be at the draughtsman's left hand if he turns the board entirely around-as would be natural and convenient--when ready to draw on the rectangle $Q Y$.

$\boldsymbol{C H A P T E R I T}$.

GRADES OF LINES.-LINE TINTING.-LINE SHADING.-CONVENTIONAL SECTION-LINING.FREQUENTLY RECURRING PLANE PROBLEMS. MISCELLANEOUS PEN AND COMPASS EXERCISES.
65. Several kinds of lines employed in mechanical drawing are indicated in the figure below. While getting his elementary practice with the ruling-pen the student may group them as shown, or in any other symmetrical arrangement, either original with himself or suggested by other designs.

When drawing on tracing cloth or tracing paper, for the purpose of making blue-prints, all the lines will preferably be black, and the centre and dimension lines distinguished from others as indicated above, as also by being somewhat finer than those employed for the light outlines of the object. Heavy, opaque, red lines may, however, be used, as they will blue-print, though faintly.

There is at present no universal agreement among the members of the engineering profession as to standard dimension and centre lines. Not wishing to add another to the systems already at variance, but preferring to facilitate the securing of the uniformity so desirable, I have presented those for some time employed by the Pennsylvania Railroad and now taught at Cornell University.

The lines of Flg. 33, as also of nearly all the other figures of this work, having been printed from blocks made by the cerographic process (Art. 277), are for the most part too light to serve as examples for machine-shop work. Fig. 80 is a sample of P. R. R. drawing, and is a fair model as to weight of line for working drawings.

A dash-and-three-dot line (not shown in the figure) is considerably used in Descriptive Geometry, either to represent an auxiliary plane or an invisible trace of any plane. (See Fig. 238).

The so-called "dotted" line is actually composed of short dashes. Its use as a "line of motion" was suggested at Cornell.

When colors are used without intent to blue-print they may be drawn as light, continuous lines. Colors will further add to the intelligibility of a drawing if employed for construction lines. Even if red dimension lines are used, the arrow heads should invariably be black. They should be drawn free-hand, with a writing pen, and their points touch the lines between which they give the distance.
66. The utmost accuracy is requisite in pencilling, as the draughtsman should be merely a copyist when using the pen. On a complicated drawing even the kind of line should be indicated at the outset, so that no time will be wasted, when inking, in the making of distinctions to which thought has already been given during the process of construction. No unnecessary lines should be drawn, or any exceeding of the intended limit of a line if it can possibly be avoided.

If the work is symmetrical, in whole or in part, draw centre lines first, then main outlines; and continue the work from large parts to small.

The visible lines of an object are to be drawn first; afterward those to be indicated as concealed.
All lines of the same quality may to advantage be drawn with one setting of the pen, to ensure uniformity; and the light outlines before the shade lines.

In drawing arcs and their tangents, ink the former first, invariably.
All the inking may best be done at once, although for the sake of clearness, in making a large and complicated drawing, a portion-usually the nearest and visible parts-may be inked, the drawing cleaned, and the pencilling of the construction lines of the remainder continued from that point.

The inking of the centre, dimension and construction lines naturally follows the completion of the main design.
푱․ 3x.

67. In Fig. 34 we have a straight-line design usually called the "Greek Fret," and giving the student his first illustration of the use of the "shade line" to bring a drawing out "in relief." The law of the construction will be evident on examination of the numbered squares.

Without entering into the theory of shadows at this point, we may state briefly the "shop rule" for drawing shade lines, viz., right-hand and lower. That is, of any pair of lines making the same turns together or representing the limit of the same
flat surface, the right-hand line is the heavier if the pair is vertical, but the lower if they run horizontally; always subject, however, to the proviso that the line of intersection of two illuminated planes is never a shade line.
68. The conic section called the parabola furnishes another interesting exercise in ruled lines, when

be omitted, being given here merely to show the law of construction. All the divisions are equal, and like numbers are joined.

Some interesting mathematical properties of the curve will be found in Chapter V.
69. A pleasing design that will test the beginner's skill is that of Fig. 36. It is suggestive of a cobweb, and a skillful free-hand draughtsman could make it more realistic by adding the spider. Use the 60° triangle for the heavy diagonals and parallels to them; the T-rule for the horizontals. Pencil the diagonals first but ink them last.
70. The even or flat effect of equidistant parallel lines is called line-tinting; or, if representing an object that has been cut by a plane, as in Fig. 37, it is called section-lining.

The section, strictly speaking, is the part actually in contact with the cutting plane; while the drawing as a whole is a sectional view, as it also shows what is back of the plane of section, the latter being always assumed to be transparent.

Adjacent pieces have the lines drawn in different directions

Fig. ©s.

in order to distinguish sufficiently between them.
The curved effect on the semi-cylinder is evidently obtained by properly varying both the strength of the line and the spacing.
71. The difference between the shading on the exterior and interior of a cylinder is sharply contrasted in Fig. 38. On the coneavity the darkest line is at the top, while on the convex surface it is near the bottom, and below it the spaces remain unchanged while the lines diminish. A better effect would have been obtained in the figure had the engraver begun to increase the lines with the first decrease in the space between them.

```
                F!g. 3e.
```


The spacing of the lines, in section-lining, depends upon the seale of the drawing. It may run down to a thirtieth of an inch or as high as one-eighth; but from a twentieth to a twelfth of an inch would be best adapted to the ordinary range of work. Equal spacing and not fine spacing
should be the object, and neither scale nor patent section-liner should be employed, but distances gauged by the eye alone.
72. A refinement in execution which adds considerably to the effect is to leave a white line between the top and left-hand outlines of each piece and the section lines. When purposing to produce this effect, rule light pencil lines as limits for the line-tints.
73. If the various pieces shown in a section are of different materials, there are four ways of denoting the difference between them:
(a) By the use of the brush and certain water-colors, a method considerably employed in Europe, but not used to any great extent in this country, probably owing to the fact that it is not applicable where blue-prints of the original are desired.

The use of colors may, however, be advantageously adopted when making a highly finished, shaded drawing; the shading being done first, in India ink or sepia, and then overlaid with a flat tint of the conventional color. The colors ordinarily used for the metals are

Payne's gray or India ink
Gamboge
Carmine
Prussian Blue
Prussian Blue with a tinge of Carmine " Steel.

[ast |ran.

Brass.

F:s. $=0$.

Steal.

Waral.

Горрег.

日rick.

More natural effects can also be given by the use of colors，in representing the other materials of construction；and the more of an artist the draughtsman proves to be，the closer can he approx－ imate to nature．

Pale blue may be used for water lines；Burnt Sienna，whether grained or not，suggests wood； Burnt Umber is ordinarily employed for earth；either Light Red or Venetian Red are well adapted for brick，and a wash of India ink having a tinge of blue gives a fair suggestion of masonry； although the actual tint and surface of any rock can be exactly represented after a little practice with the brush and colors．These points will be enlarged upon later．
（b）By section－lining with the drawing pen in the conventional colors just mentioned，a process giving very handsome and thoroughly intelligible results on the original drawing，but，as before， unadapted to blue－printing and therefore not as often used as either of the following methods．
（c）By section－lining uniformly in ink throughout，and printing the name of the material upon each piece．
（d）By alternating light and heavy，continuous and broken lines，according to some law．Said＂law＂is，unfortunately，by no means universal，despite the attempt made at a recent con－ vention of the American Society of Mechanical Engineers to secure uniformity．Each draughting office seems at present to be a law unto itself in this matter．

74．As affording valuable examples for further exercise with the ruling pen，the system of section－lines adopted by the Pennsylvania Railroad is presented on the opposite page． The wood section is an exception to the rule，being drawn free－hand，with a Falcon pen．

By way of contrasting free－hand with me－ chanical work Fig． 40 is introduced，in which the rings showing annual growth are drawn as concentric circles with the compass．

In Fig． 41 a few other sections appear， selected from the designs of M．N．Forney and F．Van Vleck，and which are fortunate arrangements．

75．Figs． 42 and 43 are profiles or outlines of mouldings， such as are of frequent occurrence in architectural work．It is

RUBBLE MASONBY
Light India $\ln k$.

BRICK
Venetian Red

Fied 41

COURSED RUBBLE MASONRY
Light lnd ia $\ln k_{.}$

VULCANITE India ink．

CONCRETE good practice to convert such views into oblique projections，giving the effect of solidity；and to further bring out their form by line shading．Figs．44－46 are such representations，the front of each being of the same form as Fig．42．The oblique lines are all parallel to each other，and－where
ェッビ- 4ぇ.

visible throughout－of the same length．Their direction should be chosen with reference to best ex－ hibiting the peculiar features of the object．Obviously the view in Fig． 44 is the least adapted to the conveying of a clear idea of the moulding，while that of Fig． 46 is evidently the best．
76. The student may, to advantage, design profiles for mouldings and line-shade them, after converting them into oblique views. As hints for such work two figures are given (47-48), taken

> Fise 45.

from actual construction in wood. By setting a moulding vertically, as in Fig. 49, and projecting horizontally from its points, a front view is obtained, as in Fig. 50.

$$
\text { Fig. } 49 . \quad \text { Fis. } 50 .
$$

77. The reverse curves on the mouldings may be drawn with the irregular curve, (see Art 58); or, if composed of circular ares to be tangent to vertical lines, by the following construction:-

Let M and N be the points of tangency on the verticals $M m$ and $N n$, and let the arcs be tangent to each other at the middle point of the line $M N$. Draw $M n$ and $N m$ perpendicular to the vertical lines. The centres, c and c_{1}, of the desired arcs, are at the intersection of $M n$ and $N m$ by perpendiculars to $M N$ from x and y, the middle points of the segments of $M N$.
78. The light is to be assumed as coming in the usual direction, i. e.,
 descending from left to right at such an angle that any ray would be projected on the paper at an angle of 45° to the horizontal.

In Fig. 43 several rays are shown. At x, where the light strikes the cylindrical portion most directly-technically is normal to the surface-is actually the brightest part. A tangent ray st gives t, the darkest part of the cylinder. The concave portion beginning at o would be darkest at o and get lighter as it approaches y.

Flat parts are either to be left white, if in the light, or have equidistant lines if in the shade, unless the most elegant finish is desired, in which case both change of space and gradation of line

FIE. 52.
 must be rcsorted to as in Fig. 52, which represents a front view of a hexagonal nut. The front face, being parallel to the paper, receives an even tint. An inclined face in the light, as $a b h f$, is lightest toward the observer, while an unillumined face $t k d g$ is exactly the reverse.

Notice that to give a flat effect on the inclined faces the spacingout as also the change in the size of lines must be more gradual than when indicating curvature. (Compare with Figs. 46 and 50.)

If two or more illuminated flat surfaces are parallel to the paper (as tgbh, Fig. 52) but at different distances from the eye, the nearest is to be the lightest; if unilluminated, the reverse would be the case.
79. In treating of the theory of shadows, distinctions have to be made, not necessary here, between real and apparent. brilliant points and lines. We may also remark at this point that to an experienced draughtsman some license is always accorded, and that he can not be expected to adhere rigidly to theory when it involves a sacrifice of effect. For example, in Fig. 46 we are unable to see to the left of the (theoretically) lightest part of the cylinder, and find it, therefore, advisable to move the darkest part past the point where, according to Fig. 43, we know it in reality to be. The professional draughtsmen who draw for the best scientific papers, and to illustrate the circulars of the leading machine designers, allow themselves the latitude mentioned, with most pleasing results. Yet until one may be justly called an expert he can depart but little from the narrow confines of theory without being in danger of producing decidedly peculiar effects.
80. As from this point the student will make considerable use of the compasses, a few of the more important and frequently recurring plane problems, nearly all of which involve their use, may well be introduced. The proofs of the geometrical constructions are in several cases omitted, but if desired the student can readily obtain them by reference to any synthetic geometry or work on plane problems.

All the problems given (except No. 20) have proved of value in shop practice and architectural work.
The student should again read Arts. 48-51 regarding special uses of the 30° and 45° triangles, which, with the T-rule, enable him to employ so many "draughtsman's" as distinguished from "geometrician's" methods; also Arts. 36 and 37.
81. Prob. 1. To draw a perpendicular to a given line at a given point, as A (Fig. 53), use the triangles, or triangle and rule as previously described; or lay off equal distances $A a, A b$, and with a and b as centres draw arcs $o s t, m s n$, with common radius greater than one-half $a b$. The required perpendicular is the line joining A with the intersection of these arcs.
82. Prob. 2. To bisect a line, as $M N$, use its extremities exactly as a and b were employed in the preceding construction, getting also a second pair of arcs (same radius for all the ares) intersecting above the line at a point we may call x. The line from s to x will be a bisecting perpendicular.

83. Prob. 3. To bisect an angle, as $A V B$, (Fig. 54), lay off on its sides any equal distances $V a$,
 $V b$. Use a and b as centres for intersecting arcs having a common radius. Join V with x, the intersection of these ares, for the bisector required.
84. Prob. 4. To bisect an arc of a circle, as $a m b$ (Fig. 54), bisect the chord $a c b$ by Prob. 2; or, by Prob. 3, bisect the angle $a V b$ which subtends the arc.
85. Prob. 5. To construct an angle equal to a given angle, as θ (Fig. 55), draw any arc ab with centre O, then, with same radius, an indefinite are $m B$, centre V; use the chord of $a b$ as a radius, and from centre B cut the are $m B$ at x. Join V and x. Then angle $A V B$ equals θ.
86. Prob. 6. To pass a circle through three points, a, b and c, join them by lines $a b, b c$, bisect these lines by
 perpendiculars, and the intersection of the latter will be the centre of the desired circle.
87. Prob.7. To divide a line into any number of equal parts, draw from one extremity, as A,

(Fig. 56), a line $A C$ making any random angle with the given linc $A B$. With a scale point off on $A C$, as many equal parts (size immaterial) as are required on $A B$; four, for example. Join the last point of division (4) with B; then parallels to such line from the other points will divide $A B$ similarly.
88. A secant to a curve is a line cutting it in two points. If the secant $A B$ be turned to the left about A, the point B will approach A, and the line will pass through $A C$ and other secant positions. When B reaches and coincides with A the line is said to be tangent to the curve. (See also Art. 368.)

A tangent to a mathematical curve is determined by means of known
 properties of the curve. For a random or graphical curve the method illustrated by Fig. 57 (a) is the most accurate and is as follows: Through T, the point of desired tangency, draw random secants to points on either side of it, as A, B, D, etc.,
 and prolong them to meet a circle having centre T and any radius. On each secant lay off-from its intersection with the circle-the chord of that secant in the random curve. Thus, $a m=T A ; \quad b n=T B ; \quad p d=T D$. From s, where the curve mnopq cuts the circle, draw $s T$, which will be a tangent, since for it the chord has its minimum value.

A normal to a curve is a line perpendicular to the tangent, at the point of tangency. In a circle it coincides in direction with the radius to the point of tangency.
89. Prob. 8. To draw a tangent to a circle at a given point draw a radius to the point. The perpendicular to this radius at its extremity will be the required tangent. Solve with triangles.
90. Prob. 9. To draw a tangent to a circle from a point without, join the centre C (Fig. 58) with the given point A; describe a semicircle on $A C$ as a diameter and join A with D, the intersection of the arcs. $A D C$ equals 90°, being inscribed in a semi-circle; $A D$ is then the required tangent, being perpendicular to $C D$ at its extremity.
91. Prob. 10. To draw a tangent at a given point of a circular
 arc whose centre is unknown or inaccessible, locate on the arc two points equidistant from the given point and on opposite sides of it; the chord of these points will be parallel to the tangent sought.
92. A regular polygon has all its sides equal, as also its angles. If of three sides it is called the equilateral triangle; four sides, the square; five, pentagon; six, hexagon; seven, heptagon; eight, octagon; nine, nonagon or enneagon; ten, decagon; eleven, undecagon; twelve, dodecagon.

The angles of the more important regular polygons are as follows: triangle, 120°; square, 90°; pentagon, 72°; hexagon, 60°; octagon, 45°; decagon, 36°; dodecagon, 30°. The angle at the vertex of a regular polygon is the supplement of its central angle.
93. For the polygons most frequently occurring there are many special methods of construction. All but the pentagon and decagon can be readily inscribed or circumscribed about a circle by the use of the T-rule and triangle. For example, draw $a b$ (Fig. 59) with the T-rule, and $c d$ perpendicular to it with a triangle. The 45° triangle will then give a square, $a c b d$. The same triangle in two positions would give ef and $g h$, whence $a g, g c$, etc., would be sides of a regular octagon.
94. The 60° triangle used as in Art. 51 would give the hexagon; and alternate vertices of the latter, joined, would give an equilateral triangle. Or the radius of the circle stepped off six times on the circumference, and alternate points connected, would result similarly.
95. Prob. 11. An additional method for inscribing an equilateral triangle in a circle, when one vertex of the triangle is given, as A, Fig. 60, is to draw the diameter, $A B$, through A, and use the triangle to obtain the sides $A C$ and $A D$, making angles of 30° with $A B . \quad D$ and C will then be the extremities of the third side of the triangle sought.

96. Prob. 12. To inscribe a circle in an equilateral triangle, draw a perpendicular from any vertex to the opposite side. The centre of the circle will be on such line, two-thirds of the distance from vertex to base, while the radius desired will be the remaining third. (Fig. 61).
97. Prob. 13. To inscribe a circle in any triangle, bisect any two of the interior angles. The intersection of these bisectors will be the centre, and its perpendicular distance from any side will be the radius of the circle sought.
98. Prob. 14. To inscribe a pentagon in a circle, draw mutually perpendicular diameters (Fig. 62); bisect a radius as at s; draw are a, x of radius $s a$ and centre s; then chord $a x=a f$, the side of the pentagon to be constructed.
99. Prob. 15. To construct a regular polygon of any number of sides, the length of the side being given.

Let $A B$ (Fig. 63) be the length assigned to a side, and a regular polygon of x sides desired. Take x equal to nine for illustration, draw a semi-circle with $A B$ as radius, and divide by trial into x (or 9) equal parts. Join B with $x-2$
 points of division, or seven, beginning at A, and prolong all but the last. With 7 as a centre, radius $A B$, cut line $B-6$ at m by an are, and join m with 7 , giving another side of the required polygon. Using m in turn as a centre, same radius as before, cut B-5 (produced) and so obtain a third vertex.

This solution is based on the familiar principles (a) that if a regular polygon has x sides, each interior angle equals $\frac{180^{\circ}(x-2)}{x}$, and (b) that the diagonals drawn from any vertex of the polygon make the same angles with each other as with the sides meeting at that vertex.
100. Prob. 16. Another solution of Prob. 15. Erect a perpendicular $H R$ (Fig. 64) at the middle point of the given side. With M as a centre, radius $M S$, describe arc $S A$ and divide it by trial into six equal parts. Ares through these points of division, using A as a centre, and numbered up from six, give the centres on the vertical line for circles passing through M and S, and in which MS would be a chord as many times as the number of the centre.
101. For any unusual number of sides the method

by "trial and error" is often resorted to, and even for ordinary cases it is by no means to be despised. By it the dividers are set "by guess" to the probable chord of the desired arc, and, supposing a heptagon wanted, the chord is stepped off seven times around the circumference; care being taken to have the points of the dividers come exactly on the arc, and also to avoid damaging the paper. If the seventh step goes past the starting point, the dividers require closing; if it falls short, the original estimate was evidently too small. Obviously, the change in setting the dividers ought in this case to be, as nearly as possible, one-seventh of the error; and after a few trials one should "come out even" on the last step.
102. Prob. 17. To lay off on a given circle an arc of the same length as a given straight line. ${ }^{1}$ Let t (Plate I, Fig. 1) be one extremity of the desired arc; $t s$ the given straight line and tangent to the circle; $t m$ equal one-fourth of $t s$, and $s x$ drawn with centre m, radius $m s$. Then the length of the arc $t x$ is a close approximation to that of the line $t s$.
103. Prob. 18. To lay off on a straight line the length of a given circular arc, ${ }^{1}$ or, technically, to rectify the arc, let $a f$ (Plate I, Fig. 3) be the given arc; $a i$ the chord prolonged till $f i$ equals onehalf the chord $a f$; and $a e$ an arc drawn with radius $a i$, centre i. Then $f e$ approximates closcly to the length of the arc $a f$.
104. Prob. 19. To obtain a straight line equal in length to any given semi-circle, ${ }^{2}$ draw a diameter oh of the given semi-circle (Plate I, Fig. 2) and a radius inclined at an angle of 30° to the radius $c h$. Prolong the radius to meet the line $b h k$, drawn tangent to the circle at h. From k lay off the radius three times, reaching n. The line no equals the semi-circumference to four places of decimals.
105. Prob. 20. To draw a circle tangent to two straight lines and a given circle. (Four solutions.) This problem is given more on account of the valuable exercise it will prove to the student in absolute precision of construction than for its probable practical applications. Fig. 4 (Plate I) illustrates the geometrical principles involved, and in it a circle is required to contain the points s and

[^2] and as ratios.

Trigonometric Functions as Ratios.
$\theta=$ the given angle $=C A B$
$h=$ hypothenuse of triangle $C A B$
$a=A B=$ side of triangle adjacent to vertex of θ
$o=B C=$ side of triangle opposite to θ
Then $\sin \theta=\frac{0}{h} ; \cos \theta=\frac{a}{h}$;
$\tan \theta=\frac{o}{\boldsymbol{a}}=\frac{\sin \theta}{\cos \theta} ;$
$\sec \theta=\frac{h}{a}=$ reciprocal of cosine.
$\operatorname{cosec} \theta=\frac{h}{o} \quad$ " " sine
$\operatorname{cotan} \theta=\frac{a}{0}=\frac{\cos \theta}{\sin \theta}=$ reciprocal of $\tan \theta$.

Trigonometric Functions as Lines.

The prefix "co" suggests "complement;" the co-sine of θ is the sine of the complement of θ, \&c. As lines the functions may be defined as follows:

The sine of an arc (e. g., that suhtended by angle θ in the figure) is the perpendicuiar ($C B$) let fall from one extremity of the arc upon the diametcr passing through the other cxtremity. If the radius A C, through one extremity of the arc, he prolonged to cut a line tangent at the other extremity, the jntercepted portion of the tangent is called the tangent of the are, and the distance, on such cxtended radius, from the centre of the circle to the tangent, is called the secant of the arc.

The co-sine, co-secant and co-tangent of the arc are respectively the sine, secant and tangent of the complement of the given arc.
a and be tangent to the line $m v_{1}$. Draw first any circle containing s and a, as the one called "aux. circle." Join s to a and prolong to meet $m v_{1}$ at k. From k draw a tangent, $k g$, to the auxiliary circle. With radius $k g$ obtain m and i on the line $m v$. A circle through s, a and m, or through s, a and i will fulfill the conditions. For $k g^{2}=k s \times k a$, as $k g$ is a tangent and $k s$ a secant. But $k i=k g$, therefore $k i^{2}=k s \times k a$, which makes $k i$ a tangent to a circle througb s, a and i.

In Fig. 5 (Plate I) the construction is closely analogous to the above, and the lettering identical for the first half of the work. The "given circle" is so called in the figure; the given lines are $P v$ and $R v$. Having drawn the bisector, $v e$, of the angle $P v R$, locate s as much below $v e$ as a (the centre of the given circle) is above it, the line $a s$ being perpendicular to $v e$. Draw $v_{1} m k i$ parallel to $v p$ and at a distance from it equal to the radius of the given circle. Then s, a, k and $m v_{1}$ of Fig. 5 are treated exactly as the analogous points of Fig. 4, and a circle obtained (centre d) containing a, s and i. The required circle will have the same centre d, but radius $d w$, shorter than the first by the distance $w i$. Treat s, a, and m, (Fig. 5), similarly, getting the smallest of the four possible circles.

The remaining solutions are obtained by using the points a and s again, but in connection with a line $y z$ parallel to $v R$ and inside the angle, again at a perpendicular distance from one of the given lines equal to the radius of the given circle.*

This problem makes a handsome plate if the given and required lines are drawn in black; the lines giving the first two solutions in red; the remaining construction lines in blue.
106. Prob. 21. To draw a tangent to two given circles (a problem that may occur in connecting
 band-wheels by belts) join their centres, c and o, (Fig. 67) and at s lay off $s m$ and $s n$ each equal to the radius of the smaller circle. Describe a semi-circle $o h k c$ on $o c$ as a diameter. Carry m and n to k and h, about o as a centre. Angles $c k o$ and $c h o$ are each 90°, being inscribed in a semi-circle; and $c k$ is parallel to $a b$, which last is one of the required tangents; while $c h$ is parallel to $t x$, a second tangent. Two more can be similarly found.
107. Prob. 22. To unite teo inclined straight lines by an arc tangent to both, radius given. Prolong the given lines to meet at a (Fig. 68). With a as a centre, and
the given radius, clescribe the arc $m n$. Parallels to the given lines and
tangent to are $n n$ meet at d, from which perpendiculars to the given
lines give the points of tangency of the
required arc, which is now drawn with A
the given radius.
108. Prob. 23. To draw through a

[^3]intersection of two lines. Join the given point e with any point f on $A B$, and also with some point g on $C D$. From any point h on $A B$ draw $h i$ parallel to $f g$, then $i k$ parallel to $g e$, and $h k$ parallel to $f e$. The line $k e$ will fulfill the conditions.
109. Prob. 24. To draw an oval upon a given line. Describe a circle on the given line, mn, (Fig.

70) as a diameter. With m and n as centres describe ares, $m x, n x$, radius $m n$. Draw $m v$ and $n t$ through v "and t, the middle points of the quadrants $y m, y n$. Then $m s$ and $r n$ are the portions of $m x$ and $n x$ forming part of the oval. Bisect $n c$ at q and draw $q x$. Also bisect $c q$ at z and join the latter with x. Bisect $y b$ in d and draw $f d$ from f, the intersection of $n s$ and $q x$. Use f as a centre, and $f s$ as radius, for an arc $s k$ terminating on $f d$. The intersection, h, of $k f$ with $x z$, is then the next centre, and $h k$ the radius of the arc $k l$ which terminates on $h y$ produced. The oval is then completed with y as a centre and radius $y l$. The lower portion is symmetrical with the upper, and therefore similarly constructed.
110. Where exact tangency is the requirement, novices occasionally endeavor to conceal a failure to secure the desired object by thickening the curve. Such a course usually defeats itself and makes more evident the error they thus hope to conceal. With such instruments of precision as the draughtsman employs there can be but little excuse, if any, either for overlapping or falling short.

A common error in drawing tangents, where the lines are of appreciable thickness, is to make the outsides of the lines touch; whereas they should have their thickness in common at the point of tangency, as at T (Fig. 70), where, evidently, the centre-lines a and b of the arcs would be exactly tangent, while the outer arc of M would come tangent to the inner are of N, and vice versa.

111. When either a tube or a solid cylindrical piece is seen in the direction of its axis, the

Fis' 72.
 outline is, obviously, simply a circle; and often the only way to determine which of the two the circle represented would be to notice which part of said end view was represented as casting the shadow. In Fig. 72, if the shaded arcs can cast shadows, the space inside the circles must be open, and the figure would represent a portion of the end view of a boiler with its tubular openings.

By exactly reversing the shading (the effect of which can be seen by turning the figure upside down) it is converted into a drawing of a number of solid, cylindrical pins, projecting from a plate.

The tapering begins at the extremities of a diameter drawn at 45° to the horizontal.
To get a perfect taper on small circles use the bow-pen, and, after making one complete circle, add the extra thickness by a second turn, which is to begin with the pen-point in the air, the pen being brought down gradually upon the paper, and then, while turning, raised from it again.

On medium and large circles the requisite taper can be obtained by a different process, viz., by using the same radius again but by taking a second centre, distant from the first by an amount equal to the proposed width of the broadest part of the shaded arc; the line through the two centres to be perpendicular to that diameter which passes through the extremities of the taper. The extra thickness should be inside the circumference, not outside.
112. As exercises in concentric circles Figs. 73 and 74 will prove a good test of skill. They represent, either entire or in section, a gymnasium ring, the "annular torus" of mathematical works.

It is a surface possessing some remarkable properties, chief among which is the fact that it is the only surface of revolution known from which two circles can be cut by each plane in three different systems of planes.* In two of these systems each plane will cut two equal circles from the surface. Fig 75

113. In Fig. 75 the same surface is shown in front view, between sub-figures X and Y. The axis of the surface will be perpendicular to the paper at A. If $M N$ represents a plane perpendicular to the paper and containing the axis, then Fig. X will show the sliape of the cut or section. As $M N$ was but one of the positions of a plane containing the axis, and as the surface might be generated by rotating $M N$ with the circle $a b$ about the axis, it is evident that in one of the three systems of planes montioned in the last article each plane must contain the axis.

When a surface can be generated by revolution about an axis one of its characteristics is that any plane perpendicular to the axis will cut it in a circle. The circles of Fig. 73 may then be, for the moment, considered as parallel cuts by a series of planes perpendicular to the axis, a few of which

[^4]may be shown in $m n$, op, \&c. (Fig. X). Each of these planes cuts two circles from the surface; the plane $o p$, for example, giving circles of diameters $c d$ and $v w$ respectively.

A plane, perpendicular to the paper on the line $P Q$, would be a bi-tangent plane, because tangent to the surface at two points, P and Q; and such plane would cut two over-lapping circles from the torus, each of them running partly on the inner and partly on the outer portion of the surface. These sections are seen as ellipses in Fig. 74. For the proof that such sẻctions are circles the student is probably not prepared at this point, but is referred to Olivier's Seventh Memoir, or to the Appendix.*
114. Another interesting fact with regard to the torus, is, that a series of planes parallel to, but not containing the axis, cut it in a set of curves called the Cassian ovals (see Art. 212), of which the Lemniscate of Art. 158 is a special case, and which would result from using a plane parallel to the axis and tangent to the surface at a point on the smallest circle at a, (Fig. 75.) ${ }^{\dagger}$
115. Fig. Y is given to illustrate the fact that from mere untapered outlines, such as compose the central figure, we cannot determine the form of the object. By shading $e h f$ and $D N r$ we get Fig. Z, and the form shown in Fig. Y would be instantly recognized without the drawing of the latter. An angular object must therefore have shade lines, as also the end view of a round object; but a side view
 of a cylindrical piece must either have uniform outlines or be shaded with several lines.

Thus, in Fig. 76, A would represent an angular piece, while B would indicate a circular cylinder; if elliptical its section would be drawn at one side as shown.
116. Before presenting the crucial test for the learner-the railroad rail-two additional practice exercises, mainly in ruling, are given in Figs. 77 and 78. The former slows that, like the parabola, the circle and hyperbola can be represented by their enveloping tangents. The upper and lower figures are merely two views of the surface called the warped hyperboloid, from the hyperbolas which constitute the curved outlines seen in the upper figure. The student can make this surface in a few moments by stringing threads through equidistant holes arranged in a circle on two circular discs of the same or different sizes, but having the same number of holes in each disc. By attaching weights to the threads to keep them in tension at all times, and giving the upper disc a twist, the surface will change from cylindrical or conieal to the hyperboloidal form shown.

Gear wheels are occasionally constructed, laving their teeth upon such a surface and in the direction of the lines or elements forming it; but the hyperboloid is of more interest mathematically than mechanically.

Begin the drawing by pencilling the three concentric circles of the lower figure. When inking, omit the smaller cireles. Draw a series of tangents to the inner circles, each one beginuing on the middle circle and terminating on the outer. Assume any vertical height, $t s^{\prime}$, for the upper figure, and draw $H^{\prime} M^{\prime}$ and $P^{\prime} R^{\prime}$ as its upper and lower limits. $H^{\prime} M^{\prime}$ is the vertieal projection, or elevation, of the circle $H K M N$, and all points on the latter, as $1,2,3,4$, are projected, by perpendiculars to $H^{\prime} M^{\prime}$, at $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$, etc. All points on the larger circle $P Q R$ are similarly projected to $P^{\prime} R^{\prime}$. The extremities of the same tangent are then joined in the upper view, as $1^{\prime \prime}$ with 1 (a).

[^5]

Part of each line is dotted, to represent its disappearing upon an invisible portion of the surface. The law of such change on the lower figure is evident from inspection, while on the elevation the point of division on each line is exactly above the point where the other view of the same line runs through $H M$ in the lower figure.
117. To reproduce Fig. 78, draw first the circle $a f b n$, then two circular arcs which would contain a and b if extended, and whose greatest distance from the original circle is x, (arbitrary). Sixteen equidistant radii as at a, c, d, etc., are next in order, of which the rule and 45° triangle give those through a, d, f and h. At their extremities, as m and n, lay off the desired width, y, and draw, toward the points thus determined, lines radiating from the centre. Terminate these last upon the inner arcs. Ink by drawing from the centre, not through or toward it.

All construction lines should be erased before the tapering lines are filled in. The "filling in" may be done very rapidly by ruling the edges in fine lines at first, then opening the pen slightly and beginning again where the opening between the lines is apparent and ruling from there, adding thickness to each edge on its inner side. It will then be but a moment's work to fill in, freehand, with the Falcon pen or a finc-pointed sable-brush, between the-now heavy-edge-lines of the
 taper. To have the pen make a coarse line when starting from the centre would destroy the effect desired.
118. The draughtsman's ability can searcely be put to a severer test on mere outline work than in the drawing of a railroad rail, so many are the changes of radii involved.

As previously stated, where tangencies to straight lincs are required, the arcs are to be drawn first, then the tangents.

Figs. 79 and 80 are photo-engravings of rail sections, showing two kinds of "finish." Fig. 80 is a "working drawing" of a Pennsylvania Railroad rail, scale 7:8. This makes one of the handsomest platcs that ean be undertaken, if finished with shade lincs, as in Fig. 79, section-lined with Prussian blue, and the dimension lines drawn in carmine.

A still higher effect is shown in the woodcut on page 85 , the rail being represented in oblique projection and shaded.

Begin Fig. 80 by drawing the vertical centre-line, it bcing an axis of symmetry. Upon it lay off $5^{\prime \prime}$ for the total height, and locate two points between the top and base, at distances from them of $1 \frac{3}{4}{ }^{\prime \prime}$ and $\frac{7^{\prime \prime}}{8}$ respectively; these to be the points of convergence of the lower lincs of the head and sloping sides of the base. From these points draw lines, at first indefinite in length, and inclined 13° to the horizontal. The top of the head is an are of $10^{\prime \prime}$ radius, subtended by an angle of 9°. This changes into an arc of $\frac{7^{\prime \prime}}{16}$ radius on the upper corner, with its centre on the side of said 9° angle. The sides of the head are straight lines, drawn at 4° to the vertical, and tangent to the corner ares. The thin vertical portion of the rail is called the web, and is $\frac{17}{3} 7^{\prime \prime}$ wide at its centre. The outlines of the web are arcs of $8^{\prime \prime}$ radius, subtended by angles of 15°, centres on line marked "centre line of bolt holes."

玉is. $7 \ominus$ -

The weight per yard of the rail shown is given as eightyfive pounds," from which we know the area of the cross-section to be eight and one-half square inches, since a bar of iron a yard long and one square inch in cross-section weighs, approximately, ten pounds. (10.2 lbs., average).

The proportions given are slightly different from those recommended in the report ${ }^{+}$of the committee appointed by the American Society of Civil Engineers to examine into the proper relations to each other of the sections of railway wheels and rails. There was quite general agreement as to the following recommendations: a top radius of twelve inches; a quarter-inch corner radius; vertical sides to the web; a lower-corner of one-sixteenth inch, and a broad head relatively to the depth.

$\boldsymbol{C H A P T E R \quad V .}$

THE HELIX. - CONIC SECTIONS. - HONOLOGICAL PLANE CURVES AND SPACE-FIGURES.-LINKMOTION CURVES. -CENTROIDS. -THE CYCLOID. —COMPANION TO THE CYCLOID.-THE CURTATE TROCHOID. -THE PROLATE TROCHOID.-HYPO-, EPI-, AND PERI-TROCHOIDS.-SPECIAL TROCHOIDS—ELLIPSE, STRAIGHT LINE, LIMAÇON, CARDIOID, TRISECTRIX, INVOLUTE, SPIRAL OF ARCHIMEDES. -PARALLEL CURVES. - CONCHOID. -QUADRATRIX. -CISSOID. - TRACTRIX.WITCH OF AGNESI.-CARTESIAN OVALS.—CASSIAN OVALS.-CATENARY.-LOGARITHMIC SPIRAL. - HYPERBOLIC SPIRAL. -THE LITUUS.-THE IONIC VOLUTE.
119. There are many curres which the draughtsman has frequent occasion to make, whose construction involves the use of the irregular curve. The more important of these are the Helix; Conic Sections-Ellipse, Parabola and Hyperbola; Link-motion curves or point-paths; Centroids; Trochoids; the Involute and the Spiral of Archimedes. Of less practical importance, though equally interesting geometrically, are the other curves mentioned in the heading.

The student should become thoroughly acquainted with the more important geometrical properties of these curves, both to facilitate their construction under the varying conditions that may arise and also as a matter of education. Considerable space is therefore allotted to them here.

At this point Art. 58 should be reviewed, and in addition to its suggestions the student is further advised to work, at first, on as large a scale as possible, not undertaking small curves of sharp curvature until after acquiring some facility with the curved ruler.

THE HELIX.
120. The ordinary helix is a curve which cuts all the elements of a right cylinder at the same angle. Or we may define it as the curve which would be generated by a point having a uniform motion around a straight line, combined with a uniform motion parallel to the line.

The student can readily make a model of the cylinder and helix by drawịng on thick paper or Bristol-board a rectangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ (Fig. 81) and its diagonal, $D^{\prime \prime} B^{\prime \prime}$; also equidistant elements, as $m^{\prime \prime} b^{\prime \prime}, n^{\prime \prime} c^{\prime \prime}$, etc. Allow at the right and bottom about a quarter of an inch extra for over-
 lapping, as shown by the lines $x y$ and $s z$. Cut out the rectangle $z x$; also cut a series of vertical slits between $D^{\prime \prime} C^{\prime \prime}$ and $z s$; put mucilage between $B^{\prime \prime} C^{\prime \prime}$ and $x y$; then roll the paper up into cylinclrical form, bringing $A^{\prime \prime} D^{\prime \prime} t^{\prime \prime} h^{\prime \prime}$ in front of and upon the gummed portion, so that $A^{\prime \prime} D^{\prime \prime}$
will coincide with $B^{\prime \prime} C^{\prime \prime}$. The diagonal $D^{\prime \prime} B^{\prime \prime}$ will then be a helix on the outside of the cylinder, but half of which is visible in front view, as $D^{\prime} 7^{\prime}$, (see right-hand figure); the other half, $7^{\prime} A^{\prime}$, being indicated as unseen.

To give the cylinder permanent form it can then be pasted to a cardboard base by mucilage on the under side of the marginal flaps below $D^{\prime \prime} C^{\prime \prime}$, turning them outward, not in toward the axis.

The rectangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ is called the development of the cylinder; and any surface like a cylinder or cone, which can be rolled out on a plane surface and its equivalent area obtained by bringing consecutive elements into the same plane, is called a developable surface. The elements $m^{\prime \prime} b^{\prime \prime}$, $n^{\prime \prime} c^{\prime \prime}$, etc., of the development stand vertically at $b, c, d \ldots g$ of the half plan, and are seen in the elevation at $m^{\prime} b^{\prime}, n^{\prime} c^{\prime}, o^{\prime} d^{\prime}$, etc. The point 3^{\prime}, where any element, as c^{\prime}, cuts the helix, is evidently as high as $3^{\prime \prime}$, where the same point appears on the development. We may therefore get the curve $D^{\prime} 7^{\prime} A^{\prime}$ by erecting verticals from $b, c, d \ldots g$, to meet horizontals from the points where the diagonal $D^{\prime \prime} B^{\prime \prime}$ crosses those elements on the development. $D^{\prime \prime} C^{\prime \prime}$ obviously equals $2 \pi r$, where $r=O D$.

The shortest method of drawing a helix is to divide its plan (a circle) and its pitch ($D^{\prime} A^{\prime}$, the rise in one turn) into the same number of equal parts; then verticals $b m^{\prime}, c n^{\prime}$, etc., from the points of division on the plan, will meet the horizontals dividing the pitch, in points $2^{\prime}, 3^{\prime}$, etc., of the desired curve.

The construction of the helix is involved in the designing of screws and screw-propellers, and in the building of winding stairs and skew-arches.

Mathematically, both the curve and its orthographic projection are well worth study, the latter being always a sinusoid, and becoming the companion to the cycloid for a 45°-helix. (Arts. 170 and 171).

For the conical helix, seen in projection and development as a Spiral of Archimedes, see Art. 191.

THE CONIC SECTIONS.

121. The ellipse, parabola and hyperbola are called conic sections or conics because they may be obtained by cutting a cone by a plane. We will, however, first obtain them by other methods.

According to the definition given by Boscovich, the ellipse, parabola and hyperbola are curves in which there is a constant ratio between the distances of points on the curve from a certain fixed point (the focus) and their distances from a fixed straight line (the directrix).

Referring to the parabola, Fig. 82, if S and B are points of the curve, F the focus and $X Y$ the directrix, then, if $S F: S T:: B F: B X$, we conclude that B and S are points of a conic section.
122. The actual value of such ratio (or eccentricity) may be 1 , or either greater or less than unity. When $S F$ equals $S T$ the ratio equals 1, and the relation is that of equality, or parity, which suggests the parabola.
123. If it is farther from a point of the conic to the focus than to the directrix the ratio is greater than 1, and the hyperbola is indicated.
124. The ellipse, of course, comes in for the third possibility as to ratio, viz., less than 1 . Its construction by this principle is not shown in Fig. 82 but later, (Art. 142), the method of generation here given illustrating the practical way in which, in landscape gardening, an elliptical plat would be laid out; it is therefore, called the construction as the "gardener's ellipse."

Taking $A C$ and $D E$ as representing the extreme length and width, the points F and F_{1} (foci) would be found by cutting $A C$ by an arc of radius equal to one-half $A C$, centre D. Pegs or pins at F and F_{1}, and a string, of length $A C$, with ends fastened at the foci, complete the preliminaries. The curve is then traced on the ground by sliding a pointed stake against the string, as at P, so that at all times the parts $F_{1} P, F P$, are kept straight.
125. According to the foregoing construction the ellipse may be defined as a curve in which the sum of the distances from any point of the curve to two fixed points is constant. That constant is evidently the longer or transterse (major) axis, AC. The shorter or conjugate (or minor) axis, $D E$, is perpendicular to the other.

With the compasscs we can determine P and other points of the ellipse, by using F and F_{1} as centres, and for radii any two scgments of $A C$. Q, for example, gives $A Q$ and $C Q$ as segments. Then arcs from F and F_{1}, with radius equal to $Q C$, would intersect arcs from the same centres, radius $Q A$, in four points of the ellipse, one of which is P.
126. By the Boscovich definition we are also enabled to construct the parabola and hyperbola by continuous motion along a string.

For the parabola place a triangle as in Fig. 82, with its altitude $G X$ toward the focus. If a string of length $G X$ be fastcned at G, stretched tight from G to any point B, by putting a pencil at B, then the remainder $B X$ swung around and the end fastened at F, it is then, evidently, as far from B to F as it is from B to the directrix; and that relation will remain constant as the triangle is slid along the directrix, if the pencil point remains against the edge of the triangle so that the portion of the string from G to the pencil is kept straight.

Fzs ee.

127. For the hyperbola, (Fig. 82), the construction is identical with the preceding, except that the string fastened at J runs down the hypothenuse, and equals it in length.
128. Referring back to Fig. 35, it will be noticed that the focus and directrix of the parabola are there omitted; but the former would be the point of intersection of a perpendicular from A upon the line joining C with E. A line through A, parallel to $C E$, would be the directrix.
129. Like the ellipse, the hyperbola can be constructed by using two foci, but whereas in the ellipse (Fig. 82) it was the sum of two focal radii that was constant, i. e., $F^{\prime} P+F_{1} P=F D+$
$F_{1} D=A C$ (the transverse axis), it is the difference of the radii that is constant for the hyperbola.

In Fig. 83 let $A B$ be the transverse axis of the two arcs, or "branches," which make the complete hyperbola; then using ρ and ρ^{\prime} to represent any two focal radii, as $F Q$ and $F_{1} Q$, or $F R$ and $F_{1} R$, we will have $\rho-\rho^{\prime}=A B$, the constant quantity.

To get a point of the curve in accordance with this principle we may lay off from either focus, as F, any distance greater than $F B$, as $F J$, and with it as a radius, and F as a centre, describe the indefinite arc $J R$. Subtracting the constant, $A B$, from $F J$, by making $J E=A B$, we use the remainder, $F E$, as a radius, and F_{1} as a centre, to cut the first are at R. The same radii will evidently determine three other points fulfilling the conditions.

130. The tangent to an hyperbola at any point, as Q, bisects the angle $F Q F_{1}$, between the focal radii.

In the ellipse, (Fig. 82), it is the external angle between the radii that is bisected by the tangent.

In the parabola, (Fig. 82), the same principle applies, but as one focus is supposed to be at infinity, the focal radius, $B G$, toward the latter, from any point, as B, would be parallel to the axis. The tangent at B would therefore bisect the angle $F B X$.
131. The ellipse as a circle viewed obliquely. If $A R M B F$ (Fig. 84) were a circular disc and we

Fig. 日里.
 were to rotate it on the diameter $A B$, it would become narrower in the direction $F E$ until, if sufficiently turned, only an edge view of the disc would be obtained. The axis of rotation $A B$ would, however, still appear of its original length. In the rotation supposed, all points not on the axis would describe circles about it with their planes perpendicular to it. M, for example, would describe an arc, part of which is shown in $M M_{1}$, which is straight, as the plane of the arc is seen "edge-wise." If instead of a circular disc we turn an elliptical one, $A C B D$, upon its shorter axis $C D$, it is obvious that B would apparently approach O on one side while A advanced on the other, and that the disc could reach a position in which it would be projected in the small circle $C k D$. If, then, the axes of an ellipse are given, as $A B$ and $C D$, use them as diameters of concentric circles; from their centre, O, draw random radii, as $O T, O K$; then either, as $O T$, will cut the circles in points, t and T, through which a parallel and perpendicular, respectively, to the longer axis, will give a point T_{1} of an ellipse.

The relation just illustrated is established analytically in the Appendix.
132. If $T S$ is a tangent at T to the large circle, then when T has rotated to T_{1} we shall have $T_{1} S$ as a tangent to the ellipse at the point derived from T, the point S having remained constant, being on the axis of rotation.

Similarly, if a tangent at R_{1} were wanted, we would first find r, corresponding to R_{1}; draw the tangent $r J$ to the small circle; then join R_{1} to J, the latter on the axis and therefore constant.
133. Occasionally we have given the length and inclination of a pair of diameters of the ellipse,

폽․․
 making oblique angles with each other. Such diameters, are called conjugate, and the curve may be constructed upon them thus: Draw the axes $T D$ and $H K$ at the assigned angle DOH; construct the parallelogram $M N$ $X Y$; divide $D M$ and $D O$ into the same number of equal parts; then from K draw lines through the points of division on $D O$, to meet similar lines drawn through H and the divisions on $D M$. The intersection of like-numbered lines will give points of the ellipse.
134. It is the law of expansion of a perfect gas that the volume is inversely as the pressure. That is, if the volume be doubled the pressure drops one-half; if trebled the pressure becomes onethird, etc. Steam, not being a perfcct gas, departs somewhat from the above law, but the curve indicating the fall in pressure due to its expansion is compared with that for a perfect gas.

To construct the curve for the latter let us suppose CLKG (Fig. 86) to be a cylinder with a rolume of gas $C G b c$ behind the piston. Let $c b$ indicate the pressure before expansion begins. If the piston be forced ahead by the expanding gas until the volume is doubled, the pressure will drop, by Boyle's law, to onc-half, and will be indicated by $t d$. For three rolumes the pressure becomes $v f$, etc. The curve $c s x$ is an hyperbola, of the form called equilateral, or rectangular.

Suppose the cylinder were infinite in length. Since we cannot Fig. es. conceive a volume so great that it could not be doubled, or a pressure so small that it could not be halved, it is evident that theoretically the curve $c x$ and the line $G K$ will forever approach each other yet never meet; that is, they will be tangent at infinity. In such a case the straight line is called an asymptote to the curre.
135. Although the right cone (i. e., one having its axis perpendicular to the plane of its basc) is usually employed in obtaining the ellipse, hyperbola and parabola, yet the same kind of sections
 can be cut from an oblique or scalene cone of circular base, as V.AB, Fig. 87. Two sets of circular sections can also be cut from such a cone, one set, obviously, by planes parallel to the base, while the other would be by planes like $C D$, making the same angle with the lowest element, $V B$, that the highest element, $V A$, makes with the base. The latter sections are called sub-contrary. Their planes are perpendicular to the plane $V A B$ containing the highest and lowest elcments-principal plene, as it is termed.

To prove that the sub-contrary section $x y$ is a circle, we note that both it and the section $m n$-the latter known to be a circle because parallel to the base-intersect in a line perpendicular to the paper at o. This line picrees the front surface of the cone at a point we may call r. It would be seen as the ordinate or (Fig. 88), were the front half of the circle $m n$ rotated until parallel to the papcr. Then or $r^{2}=o m \times o n$. But in Fig. 87 we have $o m: o y:: o x: o n$, whence $o y \times o x=o m \times o n=o r^{2}$, proving the section $x y$ circular.

Were the vertex of a scalene cone removed to infinity, the cone would become an oblique cylinder with circular base; but the latter would possess the property just established for the former.
136. The most interesting practical application of the sub-contrary section is in Stereographic Projection, one of the methods of representing the earth's surface on a map. The especial convenience of this projection is due to the fact that in it every circle is projected as a circle. This results from the relative position of the eye (or centre of projection) and the plane of projection; the latter is that of some

great circle of the carth, and the centre of projection is located at the pole of such circie.
137. In Fig. 89 let the circle $A B E$ represent the equator; $M N$ the plane of a meridian, also taken as the plane of projection; $A B$ any circle of the sphere; E the position of the eye: then $a b$, the projection of $A B$ on plane $M N$, is a circle, being a sub-contrary section of the cone $E . A B$.
138. We now take up the conic sections as derived from a right cone.

A complete cone (Fig. 90) lies as much above as below the vertex. To use the term adopted from the French, it has two nappes.

Aside from the extreme cases of perpendicularity to or containing the axis, the inclination of a plane cutting the cone may be
(a) Equal to that of the elements (see the remark in Art. 4), therefore parallel to one element, giving the parabola, as $M Q M_{1}$ (Fig. 90); the plane $k q M$ being parallel to the element $V U$, and therefore making with the base the same angle, θ, as the latter.
(b) Grater than that of the elements, causing the plane to cut both nappes, and giving a twobranch curve, the hyperbola, as $D J E$ and $f h g$ (Fig. 90).
(c) Less than that of the elements, the plane therefore cutting all the elements on one side of the vertex, giving a closed curve, the ellipse; as K s H, Fig. 91.
139. Figures 90 and 91 , with No. 4 of Plate 2, are not only stimulating examples for the draughtsman, but they illustrate probably the most interesting fact met with in the geometrical treatment of conics, viz., that the spheres which are tangent simultancously to the cone and the cutting planes, touch the latter in the foci of the conics; while in each case the directrix of the curve is the line of intersection of the cutting plane and the plane of the circle of tangency of cone and sphere.

To establish this we need only employ the wellknown principles that (a) all tangents from a point to a sphere are equal in length, and (b) all tangents are equal that are drawn to a sphere from points equidistant from its centre. In both figures all points of the cone's bases are evidently equidistant from the centres of the tangent spheres.
140. On the upper nappe (Fig. 90) let $S H$ be the
 circle of contact of a sphere which is tangent at F_{1} to the cutting plane PLK. The plane $P H_{1}$ of the circle cuts the plane of section in $P m$. If D is any point of the curve $D J E, J$ another point, and we can prove the ratio constant (and greater than unity) between the distances of D and J from F_{1} and their distances to $P m$, then the curve $D J E$ must be an hyperbola, by the Boscovich definition; F_{1} must be the focus and $P m$ the directrix.
$D F_{1}$ is a tangent whose real length is seen at $X S . J F_{1}$ and $J S$ are equal, being tangents to the sphere from the same point. We lave then the proportion $X S: G R:: J S: J R$, or $D F_{1}: D Z:$: $J F_{1}: J R$. Since $J S$ and its equal $J F_{1}$ are greater than $J R$, and the ratio $J F_{1}$ to $J R$ is constant, the proposition is established.
141. For the parabola on the lower nappe, since the plane $M q k$ is inclined at the angle θ made by the elements, we have $Q A=Q B$ (opposite equal angles), and $Q B$ equal $Q F$ (equal tangents). $M F=B W=M o$, therefore $M F: M o:: Q F: Q B(=Q A)$, and it is as far from M to the focus F as to the directrix $s x$, fulfilling the condition essential for the parabola.
142. For the ellipse $K s H$, (Fig. 91), we have $P X$ and $N T$ as the lines to be proven directrices, and F and F_{1} the points of tangency of two spheres. Let s be any point of the curve under consideration, and $V L$ the elcment containing 8 . This element cuts the contact circles of the spheres in a and A. A plane through the cone's axis and parallel to the paper would contain ot, ov and $v n$. Prolong $v n$ to meet a line $V R$ that is parallel to $K H$. Join R with a, producing it to meet $P X$ at r. In the triangles $a s r$ and $a V R$ we have $s a: s r:: V a: V R$. But $s a=s F$ (equal tangents) and similarly $V a=V n$; hence $s F: s r:: V n: V R$, which ratio is less than unity; therefore s is a point on an ellipse.*

The plane of the intersecting lines $V a$ and $R r$ cuts the plane $M N$ in $A T$, which is therefore parallel to ar; hence $s A: s T:: V n: V R$. But $s A=s F_{1}$; therefore $s F_{1}: s T:: V n: V R$, the same ratio as before.
143. If the plane of section $P N$ were to approach parallelism to $V C$, the point R would advance toward n, and when $V R$ became $V n$ the plane would have reached the position to give the parabola.

[^6]144. The proof that $K s I I$ (Fig. 91) is an ellipse when the curve is referred to two foci is as follows: $K F=K m ; K F_{1}=K t$; therefore $K F+K F_{1}=K m+K t=t m=x n=2 K F+F F_{1}=$ $2 H F+F F_{1} ;$ i. е., $K F=H F_{1}$.

Since $s F=s a$, and $s F_{1}=s A$, we have $s F+s F_{1}=s a+s A=A a=t m=x n=H K$. The sum of the distances from any point s to the two fixed points F and F_{1} is therefore constant, and equal to the longer axis, $H K$.

homologous plane and space figures.

145. Before leaving the conic sections, their construction will be given by the methods of Projective Geometry. (At this point review Arts. 4 and 9).

In Fig. 92, if S_{1} is a centre of projection, then the figure $A^{1} B^{1} C^{1}$ is the contral projection of $A_{1} B_{1} C_{1}$. The points A^{1} and A_{1} are corresponding points, being in different planes but collinear with S_{1}. Similarly B^{1} corresponds to B_{1}, and C^{1} to C_{1}.

With S_{2} as the centre of projection we have the figure $A_{2} B_{2} C_{2}$ corresponding to $A^{1} B^{1} C^{1}$.
We are to show that some point O can be found, in the plane of the figures $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$, to which—and to each other-those figures bear the same relation as that existing between each of them and $A^{1} B^{1} C^{1}$ when considered in connection with one of the S-centres. This compels the points of intersection of corresponding lincs to be collinear. Figures standing in these relations to a point and a line in their plane are called homologous. The point is called a centre of homology; the line an axis of homology. Points collinear with O, as A_{1} and A_{2}, are homologous points. FE. se.

To illustrate these statements, join S_{2} with S_{1} and prolong to O, to meet the plane of the figures $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$. Using the technical term tracc for the intersection of a line with a plane or of one plane with another, we see that as the line $A_{1} A_{2}$ is the horizontal trace of the plane determined by the lines joining A^{1} with S_{1} and S_{2}, it must contain the horizontal trace, O, of the line joining S_{2} with S_{1}. But this puts A_{2} and A_{1} into the same relation with O that A_{2} and A^{1} sustain to S_{2}; or that of A^{1} and A_{1} to S_{1}.

Again, $A^{1} c_{0}$ is the trace, on the vertical plane, of any plane containing $A^{1} B^{1}$. This plane cuts the "axis of homology," $t_{1} m$, in c_{0}. As $A_{1} B_{1}$ lies in the plane of S_{1} and $A^{1} B^{1}$, and in the horizontal plane as well, it can only meet the vertical plane in c_{0}, the point of intersection of all these planes. Similarly we find that $A^{1} C^{1}$ and $A_{1} C_{1}$, if prolonged, meet the axis at the point b_{0}; correspondingly $B^{1} C^{1}$ and $B_{1} C_{1}$ meet at a_{0}. But $A^{1} B^{1}$ and $A_{2} B_{2}$, being corresponding
 lines, lie in the plane with S_{2}, though belonging to figures in two other planes; they must, therefore, meet also at the same point, c_{0}; and similarly for the other lines in the figures used with S_{2}.
146. Were $A_{1} B_{1} C_{1}$ a circle, and all its points joined with S_{1}, the figure $A^{1} B^{1} C^{1}$ would obviously be an ellipse; equally so were $A_{2} B_{2} C_{2}$ a circle used in connection with S_{2}. We may, therefore,
substitute a circle for $A_{2} B_{2} C_{2}$, and using O on the same plane with it get an ellipse in place of the triangle $A_{1} B_{1} C_{1}$. Before illustrating this, it is necessary to show the relation of the axis to the other elements of the problem, and supply a test as to the nature of the conic.
147. First as to the axis, and employing again for a time a space figure (Fig. 93), it is evident that raising or lowering the horizontal plane $c X Y$ parallel to itself, and with it, necessarily, the axis, would not alter the kind of curve that it would cut from the cone S. $H A B$, were the elements of the latter prolonged. But raising or lowering the centre S, while the base cirele AHBt remained, as before, in the same place, would decidedly affect the curve. Where it is, there are two elements of the cone, $S A$ and $S B$, which would never meet the plane $c X Y$. The shaded plane containing those elements meets the vertical plane in "wanishing line (a)," parallel to the axis. This contains the projections, A and B, of the points at infinity where the lower plane may be considered as cutting the elements $S A$ and $S B$. Were S and the shaded plane raised to the level of H, making "vanishing line (a)" tangent to the base, there would be one element, $S H$, of the cone, parallel to the lower plane, and the section of the cone by the latter would be the parabola; as it is, the hyperbola is indicated. The former would have but one point at infinity; the latter, two.
148. Raise the centre S so that the vanishing line does not cut the base, and evidently no line from S to the base would be parallel to the lower plane; but the latter would cut all the elements on one side of the vertex, giving the ellipse.
149. Bearing in mind that the projection of the circle $A H B t$ is on the lower plane produced, if we wish to bring both these figures and the centre S into one plane without destroying the relation between them, we may imagine the end plane $Q L X$ removed, the rotation of the remaining system

occurring about $c r_{1}$ in a manner exactly similar to that which would occur were iojc a system of four pivoted links, and the point o pressed toward c. The motion of S would be parallel and equal
to that of o, and, like the latter, S would evidently maintain its distance from the vanishing line and describe a circular arc about it. The vanishing line would remain parallel to the axis.
150. From the foregoing we see that to obtain the hyperbola, by projection of a circle from a point in the plane of the latter, we would require simply a secant vanishing line, $M N$ (Fig. 94), and an axis of homology parallel to it. Take any point P on the vanishing line and join it with any point K of the circle. $P K$ meets the axis at y; hence whatever line.corresponds to $P K$ must also meet the axis at $y . O P$ is analogous to $S A$ of Fig. 93 , in that it meets its corresponding line at infinity, i. e., is parallel to it. Therefore $y k$, parallel to $O P$, corresponds to $P y$, and meets the ray $O K$ at k, corresponding to K. Then K joined with any other point R gives $K z$. Join z with k and prolong $O R$ to intersect $k z$, obtaining r, another point of the hyperbola.
151. In Fig. 93, were a tangent drawn to arc $A H B$ at B, it would meet the axis in a point which, like all points on the axis, "corresponds to itself." From that "point the projection of that tangent on the lower plane would be parallel to $S B$, since they are to meet at infinity. Or, if $S J$ is parallel to the tangent at B, then J will be the projection of J^{1} at infinity, where $S J$ meets the tangent; J will be therefore one point of the projection of said tangent on the lower plane; while another point would be, as previously stated, that in which the tangent at B meets the axis.
152. Analogously in Fig. 94, the tangents at M and N meet the axis, as at F and E; but the projectors $O M$ and $O N$ go to points of tangency at infinity; M and N are on a "vanishing line"; hence $O M$ is parallel to the tangent at infinity, that is, to the asymptote (see Art. 134) through F; while the other asymptote is a parallel through E to $O N$.
153. As in Fig. 93 the projectors from S to all points of the are above the level of S could cut the lower plane only by being produced to the right, giving the right-hand branch of the lyperbola; so, in Fig. 94, the arc MHN, above the vanishing line, gives the lower branch of the hyperbola. To get a point of the latter, as h, and having already obtaincd any point x of the other branch, join H with X (the original of x) and get its intersection, g, with the axis. Then $x g h$ corresponds to $g X H$, and the ray $O H$ meets it at h, the projection of H.

The cases should be worked out in which the vanishing line is tangent to the circle or exterior to it.
154. The homological figures with which we have been dealing were plane figures. But it is possible to have space figures homological with each other.

In homological space figures corresponding lines meet at the same point in a plane, instead of the same point on a line. A vanishing plane takes the place of a vanishing linc. The figure that is in homology with the original figure is called the relief-perspective of the latter. (See Art. 11.)

Remarkably beautiful effects can be obtained by the construction of homological space figures, as a glance at Fig. 95 will show. The figure represents a triple row of groined arches, and is from a photograph of a model designed by Prof. L. Burmester.

Fis옹․

Although not always requiring the use of the irregular curve, and therefore not strictly the material for a topic in this chapter, its close analogy to the foregoing matter may justify a few words at this point on the construction of a relief-perspective.
155. In Fig. 96 the plane $P Q$ is called the plane of homology or picture-plane, and-adopting Cremona's notation-we will denote it by π. The ranishing plane $M N$, or ϕ^{\prime}, is parallel to it. O is
the centre of homology or perspective-centre. All points in the plane π are their own perspectives, or, in other words, correspond to themselves. Therefore $B^{\prime \prime}$ is one point of the projection or perspective of the line $A B$, being the intersection of $A B$ with π. The line $O v$, parallel to $A B$, would meet the Fis. 96.

latter at infmity; therefore v, in the vanishing plane ϕ^{\prime}, would be the projection upon it of the point at infinity. Joining v with $B^{\prime \prime}$, and cutting $r B^{\prime \prime}$ by rays $O A$ and $O B$, gives $A^{\prime} B^{\prime}$ as the reliefperspective of $A B$. The plane through O and $A B$ cuts π in $B^{\prime \prime} n$, which is an axis of homology for $A B$ and $A^{\prime} B^{\prime}$, exactly as $m n$ in Fig. 92 is for $A_{1} B_{1}$ and $A_{2} B_{2}$.

As $D C$ in Fig. 96 is parallel to $A B$, a parallel to it through O is again the line $O v$.

The trace of $D C$ on π is $C^{\prime \prime}$. Joining v with $C^{\prime \prime}$ and cutting $v C^{\prime \prime}$ by rays $O D, O C$, obtains $D^{\prime} C^{\prime}$ in the same manner as $A^{\prime} B^{\prime}$ was clerived. The originals of $A^{\prime} B^{\prime}$ and $C^{\prime} D^{\prime}$ are parallel lines; but we see that their relief-perspectives meet at v. The vanishing plane is therefore the locus* of the ranishing points of lines that are parallel on the original object, while the plane of homology is the locus of the axes of homology of corresponding lines; or, differently stated, any line and its relief-perspective will, if produced, meet on the plane of homology.
156. Fig. 97 is inserted here for the sake of completeness, although its study may be reserved, if necessary, until the chapter on projections has been read. In it a solid object is represented at the left, in the usual riews, plan and elevation; $G I$ being the ground line or axis of intersection of the planes on which the views are made. The planes π and ϕ^{\prime} are interchanged, as compared with their positions in Fig. 96, and they are seen as lines, being assumed as perpendieular to the paper. The relief-perspective appears between them, in plan and elevation.

The lettering of $A B$ and $D C$, and the lines employed in getting their relief-perspectives, being identical with the same constructions in Fig. 96, ought to make the matter clear at a glance to all who have mastered what has preceded.

Burmester's Grundzïge der Relief-Perspective and Wiener's Darstellende Geometrie are valuable reference works on this topic for those wishing to pursue its study further; but for special work in the line of homological plane figures the student is recommended to read Cremona's Projective Geometry and Graham's Geometry of Position, the latter of which is especially valuable to the engineer or arehitect, since it illustrates more fully the practical application of central projection to Graphical Statics.

LINK-MOTION CURVES

157. Kinematics is the science which treats of pure motion, regardless of the cause or the results of the motion.

It is a purely kinematic problem if we lay out on the drawing-board the path of a point on the connecting-rod of a locomotive, or of a point on the piston of an oscillating cylinder, or of any point on one of the moving pieces of a mechanism. Such problems often arise in machine design, especially in the invention or modification of valve-motions.

Some of the motion-curres or point-paths that are discovered by a study of relative motion are without special name. Others, whose mathematical properties had already been investigated and the curves dignified with names, it was later found could be mechanieally traced. Among these the most familiar examples are the Ellipse and the Lemniscate, the latter of which is employed here to illustrate the general problem.

The moving pieces in a mechanism are rigid and inextensible, and are always under certain conditions of restraint. "Conditions of restraint" may be illustrated by the familiar case of the con-necting-rod of the locomotive, one end of which is always attached to the driving-wheel at the crank-pin and is therefore constrained to describe a circle about the axle of that wheel, while the other end of the rod must move in a straight line, being fastened by the "wrist-pin" to the "crosshead," which slides between straight "guides." The first step in tracing a point-path of any mechanism is therefore the determination of the fixed points, and a general analysis of the motion.

[^7]158. We have given, in Fig. 98, two links or bars, $M N$ and $S P$, fastened at N and P by pivots to a third link, $N P$, while their other extremities are pivoted on stationary axes at M and S. The only movement possible to the point N is therefore in a circle about M; while P is equally limited to circular motion about S. The points on the link $N P$, with the exception of its

extremities, have a compound motion, in curves whose form it is not easy to predict and which differ most curiously from each other. The figure-of-eight curve shown, otherwise the "Lemniscate of Bernoulli," is the point-path of Z, the link $N P$ being supposed prolonged by an amount, $P Z$, equal to $N P$. Since NP is constant in length, if N were moved along to F, the point P would have to be at a distance $N P$ from F, and also on the circle to which it is confined; therefore its new position f, is at the intersection of the circle $P s r$ by an are of radius $P N$, centre F. Then $F f$, prolonged by an amount equal to itself, gives f_{1}, another point of the Lemniscate, and to which Z has then moved. All other positions are similarly found.

If the motion of N is toward D it will soon reach a limit, A, to its further movement in that direction, arriving there at the instant that P reaches a, when $N P$ and $P S$ will be in one straight line, $S A$. In this position any movement of P either side of a will drag N back over its former path; and unless P moves to the left, past a, it would also retrace its path. P reaches a similar "dead point" at v.

To obtain a Lemniscate the lirks $N P$ and $P S$ had to be equal, as also the distance $M S$ to $M N$. Bv varying the proportions of the links, the point-paths would be correspondingly affected.

By tracing the path of a point on $P N$ produced, and as far from N as $\%$ is from P, the student will obtain an interesting contrast to the Lemniscate.

If M and S were joined by a link, and the latter held rigidly in position, it would have been called the fixed link; and although its use would not have altered the motions illustrated, and it is not essential that, it should be drawn, yet in considering a mechanism as a whole, the line joining the fixed centres always exists, in the imagination, as a link of the complete system.

instantaneous centres. - Centroids.

159. Let us imagine a boy about to hurl a stone from a sling. Just before he releases it he runs forward a few steps, as if to add a little extra impetus to the stone. While taking those few steps a peculiar shadow is cast on the road by the end of the sling, if the day is bright. The
```
FIE.OO.
```


boy moves with respect to the earth; his hand moves in relation to himself, and the end of the sling describes a circle about his hand. The last is the only definite element of the three, yet it is sufficient to simplify otherwise difficult constructions relating to the complex curve which is described relatively to the earth.

A tangent and a normal to a circle are easily obtained, the former being, as need hardly be stated at this point, perpendicular to the radius at the point of tangeney, while the normal simply coincides in direction with such radius. If the stone were released at any instant it would fly off in a straight line, tangent to the circle it was describing about the hand as a centre; but such line would, at the instant of release, be tangent also to the compound curve. If, then, we wish a tangent at a given point of any curve generated by a point in motion, we have but to reduce that motion to circular motion about some moving centre; then, joining the point of desired tangency with the at that instant-position of the moving centre, we have the normal, a perpendicular to which gives the tangent desired.

A centre which is thus used for an instant only is called an instentaneous centre.
160. In Fig. 99 a series of instantaneous centres are shown and an important as well as interesting fact illustrated, viz., that every moving piece in a mechanism might be rigidly attached to a certain curve, and by the rolling of the latter upon another curve the link might be brought into all the positions which its visible modes of restraint compel it to take.
161. In the "Fundamental" part of Fig. $99 A B$ is assumed to be one position of a link. We next find it, let us suppose, at $A^{\prime} B^{\prime}, A$ having moved over $A A^{\prime}$, and B over $B B^{\prime}$. Bisecting $A A^{\prime}$ and $B B^{\prime}$ by perpendiculars intersecting at O, and drawing $O A, O A^{\prime}, O B$ and $O B^{\prime}$, we have $A O A^{\prime}=\theta_{1}=B O B^{\prime}$, and O evidently a point about which, as a centre, the turuing of $A B$ through the angle θ_{1} would have brought it to $A^{\prime} B^{\prime}$. Similarly, if the next position in which we find $A B$ is $A^{\prime \prime} B^{\prime \prime}$, we may find a point s as the centre about which it might have turned to bring it there; the angle being θ_{2}, probably different from $\theta_{1} . \quad N$ and m are analogous to O and s.

If $O s^{\prime}$ be drawn equal to $O s$ and making with the latter an angle θ_{1}, equal to the angle $A O A^{\prime}$, and if $O \&$ were rigidly attached to $A B$, the latter would be brought over to $A^{\prime} B^{\prime}$ by bringing $O s^{\prime}$ into coincidence with $O s$. In the same manner, if we bring $s^{\prime} n^{\prime}$ upon $s n$ through an angle θ_{2} about s, then the next position, $A^{\prime \prime} B^{\prime \prime}$, would be reached by $A B$. $O^{\prime} s^{\prime} n^{\prime} m^{\prime}$ is then part of a polygon whose rolling upon $O s n m$ would bring $A B$ into all the positions shown, provided the polygon and the line were so attached as to move as one piece. Polygons whose vertices are thus obtained are called central polygons.

If consecutive centres were joined we would have curves, called centroids*, instead of polygons; the one corresponding to $0 \sin$ leing called the fixed, the other the rolling centroid. The perpendicular from O upon $A A^{\prime}$ is a normal to that path. But were A to move in a circle, the normal to its path at any instant would be simply the radius to the position of A at that instant.

If, then, both A and B were moving in circular paths, we would find the instantaneous centre at the intersection of the normals (radii) at the points A and B.
162. In Fig. 98 the instantaneous centre about which the whole link $N P$ is turning, is at the intersection of radii $M N$ and $S P$ (produced); and calling it X we would have $X Z$ for the normal at Z to the Lemniscate.
163. The shaded portions of Fig. 99 illustrate some of the forms of centroids.

The meehanism is of four links, opposite links equal. Unlike the usual quadrilateral fulfilling this condition, the long sides cross, hence the name "anti-parallelogram."

The "fixed link (a)" corresponds to MS of Fig. 98, and its extremities are the centres of rotation of the short links, whose ends, f and f_{1}, deseribe the dotted circles.

For the given position T is evidently the instantaneous centre. Were a bar pivoted at T and

[^8]fastened at right angles to "moving link (a)," an infinitesimal turning about T would move "link (a)" exactly as under the old conditions.

By taking "link (a)" in all possible positions, and, for each, prolonging the radii through its extremities, the points of the fixed centroid are determined. Inverting the combination so that "moving link (a)" and its opposite are interchanged, and proceeding as before, gives the points of "rolling centroid (a)."

These centroids are branches of hyperbolas having the extremities of the long links as foci.
By holding a short link stationary, as "fixed link (b)," an elliptical fixed centroid results; "rolling centroid (b)" being obtained, as before, by inversion. The foci are again the extremities of the fixed and moving links.

Obviously, the curved pieces represented as screwed to the links would not be employed in a practical construction, and they are only introduced to give a more realistic effect to the figure and possibly thereby conduce to a clearer understanding of the subject.
164. It is interesting to notice that the Lemniscate occurs here under new conditions, being traced by the middle point of "moving link (a)."

The study of kinematics is both fascinating and profitable, and it is hoped that this brief glance at the subject may create a desire on the part of the student to pursue it further in such works as Reauleaux' Kinematics of Machinery and Burmester's Lchrbuch der Kinematik.
165. Before leaving this topic the important fact should be stated, which now needs no argument to establish, that the instantaneous centre, for any position of a moving piece, is the point of contact of the rolling and fixed centroids. We shall have occasion to use this principle in drawing tangents and normals to the

TROCHOIDS

which are the principal Roulettes, or roll-traced curves, and which may be defined as follows:-
If, in the same plane, one of two circles roll upon the other without sliding, the path of any point on a radius of the rolling circle or on the radius produced is a trochoid.
166. The Cycloid. Since a straight line may be considered a circle of infinite radius, the above definition would include the curve traced by a point on the circumference of a locomotive wheel as it rolls along the rail, or of a carriage wheel on the road. This curve is known as a cycloid,* and is shown in Tnabc, Fig. 100. It is the proper outline for a portion of each tooth in a certain case of gearing, viz., where one wheel has an infinite radius, that is, becomes a "rack."

Were T_{6} a ceiling-corner of a room, and T_{12} the diagonally opposite floor-corner, a weight would slide from T_{6} to T_{12} more quickly on guides curved in cycloidal shape than if shaped to any other curve, or if straight. If started at s, or any other point of the curve, it would reach T_{12} as soon as if started at T_{6}.
167. In beginning the construction of the cycloid we notice, first, that as $T V D$ rolls on the straight line $A B$, the arrow $D R T$ will be reversed in position (as at $D_{5} T_{6}$) as soon as the semicircumference $T 3 D$ has had rolling contact with $A B$. The tracing point will then be at T_{6}, its maximum distance from $A B$.

When the wheel has rolled itself out once upon the rail, the point T will again come in contact with the rail, as at T_{12}.

[^9]The distance $T T_{12}$ evidently equals $2 \pi r$, when $r=T R$. We also have $T D_{5}=D_{5} T_{12}=\pi r$ If the semi-circumference $T 3 D$ (equal to πr) be divided into any number of equal parts, and also the path of centres $R R_{6}$ (again $=\pi r$) into the same number of equal parts, then as the points 1,2 , etc., come in contact with the rail, the centre R will take the positions R_{1}, R_{2}, etc., directly above the corresponding points of contact. A sufficient rolling of the wheel to bring point 2 upon $A B$ would evidently raise T from its original position to the former level of 2 . But as T must always be at a radius' distance from R, and the latter would by that time be at R_{2}, we would find T located at the intersection (n) of the dotted line of level through 2 by an are of radius $R T$, centre R_{2}. Similarly for other points.

The construction, summarized, involves the drawing of lines of level through equidistant points of division on a semi-circumference of the rolling circle, and their intersection by arcs of constant radius (that of the rolling circle) from centres which are the successive positions taken by the centre of the rolling circle.

It is worth while calling attention to a point occasionally overlooked by the novice, although almost self-evident, that, in the position illustrated in the figure, the point T drags behind the centre R until the latter reaches R_{6}, when it passes and goes ahead of it. From R_{7} the line of level through 5 could be cut not alone at c by an arc of radius $c R_{7}$ but also in a second point; evidently but one of these points belongs to the cycloid, and the choice depends upon the direction of turning, and upon the relative position of the rolling centre and the moving point. This matter requires more thought in drawing trochoidal curves in which both circles have finite radii, as will appear later.

$$
\text { FEg- } 100 \text {. }
$$

168. Were points T_{6} and T_{12} given, and the semi-cycloid $T_{6} T_{12}$ desirecl, we can readily ascertain the "base," $A B$, and generating circle, as follows: Join T_{6} with T_{12}; at any point of such line, as x, erect a perpendicular, $x y$; from the similar triangles $x y T_{12}$ and $T_{6} D_{5} T_{12}$, having angle ϕ common and angles θ equal, we see that

$$
x y: x T_{12}:: T_{6} D_{5}: D_{8} T_{12}:: 2 r: \pi r:: 2: \pi:: 1: \frac{\pi}{2} ; \text { or, very nearly, as } 14: 22 .
$$

If, then, we lay off $x T_{12}$ equal to twenty-two equal parts on any scale, and a perpendicular, $x y$, fourteen parts of the same scale, the line $y T_{12}$ will be the base of the desired curve; while the diameter of the generating circle will be the perpendicular from T_{6} to $y T_{12}$ prolonged.
169. To draw the tangent to a cyeloid at any point is a simple matter, if we see the analogy between the point of contact of the whecl and rail at any instant, and the hand used in the former illustration (Art. 159). At any one moment each point on the entire wheel may be considered as describing an infinitesimal arc of a circle whose radius is the line joining the point with the point of contact on the rail. The tangent at N, for example, (Fig. 100), would be $t N$, perpendicular to the normal, No, joining N with o; the latter point being found by using N as a centre and
cutting $A B$ by an are of radius equal to $m l$, in which m is a point at the level of N on any position of the rolling circle, while l is the corresponding point of contact. The point o might also have been located by the following method: Cut the line of centres by an are, centre N, radius $T R$; o would obviously be vertically below the position of the rolling centre thus determined.
170. The Companion to the Cycloid. The kinematic method of drawing tangents, just applied, was devised by Roberval, as also the curve named by him the "Companion to the Cycloid," to which allusion has already been made (Art. 120) and which was invented by him in 1634 for the purpose of solving a problem upon which he had spent six years without success, and which had foiled Galileo, viz., the calculating of the area between a cycloid and its base. Galileo was reduced to the expedient of comparing the area of the cycloid with that of the rolling circle by weighing paper models of the two figures. He concluded that the area in question was nearly but not exactly three times that of the rolling circle. That the latter would have been the correct solution may be readily shown by means of the "Companion," as will be found demonstrated in Art. 172.
171. Suppose two points coincident at T (Fig. 101) and starting simultaneously to generate curves, the first of these points to trace the cycloid during the rolling of circle $T V D$, while the second is to move independently of the circle and so as to be always at the level of the point tracing the cycloid, yet at the same time vertically above the- point of contact of the circle and base. This makes the second point always as far from the initial vertical diameter, or axis, of the cycloid, as the length of the arc from T to whatever level the tracing point of the latter has then reached; that is, MA equals are THs; RO equals quadrant Tsy.

Adopting the method of Analytical Geometry, and using O as the origin, we may reach any point, A, on the curve, by co-ordinates, as $O x, x A$, of which the horizontal is called an abscissa, the vertical an ordinate. By the preceding eonstruction $O x$ equals arc sfy, while $x A$ equals $s w$-the sine of the same are. The "Companion" is therefore a curve of sines or sinusoid, since, starting from O, the abscissas are equal to or proportional to the arc of a cirele, while the ordinates are the sines of those arcs. It is also the orthographic projection of a 45°-helix.

This curve is particularly interesting as "expressing the law of the vibration of perfectly elastic solids; of the vibratory movement of a particle acted upon by a force which varies directly as the distance from the origin; approximately, the vibratory movement of a pendulum; and exactly the law of vibration of the so-called mathematical pendulum."* (See also Art. 356).
172. From the symmetry of the sinusoid with respect to $R R_{6}$ and to O, we have area $T A O R=E C O R_{6}$; adding area $D E L O R$ to both members we have the area between the sinusoid and $T D$ and $D E$ equal to the rectangle $R E$, or one-half the rectangle $D E K T$; or to $\frac{1}{2} \pi r \times 2 r=$ πr^{2}, the area of the rolling circle.

As $T A C E$ is but half of the entire sinusoid, it is evident that the total area below the carve is twice that of the generating circle.

The area between the cycloid and its "companion" remains to be determined, but is readily ascertained by noting that as any point of the latter, as A, is on the vertical diameter of the circle

[^10]passing through the then position of the tracing point, as a, the distance, $A a$, between the two curves at any level, is merely the semi-chord of the rolling circle at that level. But this, evidently, equals M_{s}, the semi-chord at the same level on the equal circle. The equality of M_{s} and $A a$ makes the elementary rectangles $M_{\& s_{1}} m_{1}$ and $A_{A_{1}} a_{1} a$ equal; and considering all the possible similarly-constructed rectangles of infinitesimal altitude, the sum of those on semi-chords of the rolling circle would equal the area of the semi-circle TD y, which is therefore the extent of the area between the two curves under consideration.

The figure showing but half of a cycloid, the total area between it and its "companion" must be that of the rolling circle. Adding this to the area between the "companion" and the base makes the total area between cycloid and base equal to three times that of the rolling circle.
173. The paths of points carried by and in the plane of the rolling circle, though not on its circumference, are obtained in a manner closely analogous to that employed for the cycloid.

In Fig. 102 the looped curve, traced by the arrow-point while the circle $C H M$ rolls on the base $A B$, is called the Curtate Trochoid. To obtain the various positions of the tracing point T describe a circle through it from centre R. On this circle lay off any even number of equal arcs, and draw radii from R to the points of division; also "lines of level" through the latter. The radii drawn intercept equal arcs on the rolling circle $C H M$, whose straight equivalents are next laid off on the path of centres, giring R_{1}, R_{2}, etc. While the first of these ares rolls upon $A B$, the point T turns through the angle $T R 1$ about R, and reaches the line of level through point 1 . But T is always at the distance $R T$ (called the tracing radius) from R; and, as R has reached R_{1} in the rolling supposed, we will find T_{1}-the new position of T-by an arc from R_{1}, radius $T R$, cutting said line of level.

$$
\text { Fig. } 102
$$

After what has preceded, the figure may be assumed to be self-interpreting, each position of T having been joined with the position of R which determined it.
174. Were a tangent wanted at any point, as T_{7}, we have, as before, to determine the point of contact of rolling circle and line when T reached T_{7}, and use it as an instantaneous centre. T_{7} was obtained from R_{7}; and the point of contact must have been vertically below the latter and on A B. Joining such point to T_{r} gives the normal, from which the tangent follows in the usual way.
175. The Prolate Trochoid. Had we taken a point inside of the circle $C H M$ and constructed its path, the only difference between it and the curve illustrated would have been in the name and the
shape of the curve. An undulating, wary path would have resulted, called the prolate trochoid; but, as before, we would have described a circle through the tracing point; divided it into equal parts; drawn lines of level, and cut them by arcs of constant radius, using as centres the successive positions of R. A bicycle pedal describes al prolate trochoid relatively to the earth.

HYPO-, EPI- AND PERI-TROCllOIDS.
176. Circles of finite radius can evidently be tangent in but two ways-either externally, or internally; if the latter, the larger may roll on the one within it, or the smaller may roll inside the larger. When a small eircle rolls within a larger, the radius of the latter may be greater than the diameter of the rolling circle, or may equal it, or be smaller. On account of an interesting property of the curves traced by points in the planes of such rolling circles, viz., their capability of being generated, trochoidally, in two ways, a nomenclature was necessary which would indieate how each curve was obtained. This is included in the tabular arrangement of names below, and which was the outcome of an investigation* made by the writer in 1887 and presented before the American Association for the Advancement of Science. In aceepting the new terms, advanced at that time, Prof. Francis Reuleaux suggested the names Ortho-cyeloids and Cyclo-orthoids for the classes of curves of which the cycloid and involute are respectively representative; orthoids being the paths of points in a fixed position with respect to a straight line rolling upon any curve, and eyclo-orthoid therefore implying a circular director or base-curve. These appropriate terms have been incorporated in the table.

For the last column a point is considered as within the rolling circle of infinite radius when on the normal to its initial position, and on the side toward the centre of the fixed circle.

As will be seen by reference to the Appendix, the curves whose names are preceded by the same letter may be identical. Hence the terms curtate and prolate, while indieating whether the tracing point is beyond or within the circumference of the rolling circle, give no lint as to the actual form of the curves.

In the table, R represents the radius of the wolling cirele, F that of the fixed circle.
yomenclature of trochoids.

Position of Tracing or Describing Point.	Circle rolling upon Straight Line. $\mathrm{F}=\infty$ Orthoocycloids.	Circle rolling upon circle.					Straight Line rolling upon Circle. $\quad R=\infty$
		External contact.	Internal contact.				
			Larger Circle rolling.	Smaller circle rolling.			
		Fpitrochoids:		$2 \mathrm{R}>\mathrm{F}$.	$2 \mathrm{R}<\mathrm{F}$.	$\because \mathrm{R}=\mathrm{F}$.	Cyclo-orthoids.
			Peritrochoids.	Major Hypotrochoids.	Minor Hypotrochoids.	Medial Hypotrochoids.	
On circumference of rolling circle,	Cycloid.	(a) Epicycloid.	(a) Pericycloid.	(d) Major II y pocycloid.	(d) Minor Hypocycloid.	Straight Hypocycloid.	Involute.
Within Circumference.	Prolate Trochoid.	(b) Prolate Epitrochoid.	(c) Prolate Peritrochoid.	(e) Major Prolate Hy potrochoid.	(f) Minor piolate Hypotrochoid.	(g) Prolate Elliptical Hypotrochoid.	Prolate Cyclo-arthoid.
Without Circumference.	Curtate Trochoid.	(c) Curtate Epitrochoid.	(b) Curtate Peritrochoid	(t) Major Curtate Hypotrochoid.	(e) Minor Curtate Hypotrochoid.	(g) Curtate EIliptical Hypotrochoid.	Curtate Cyclo-orthoid.

177. From the above we sce that the prefix epi (ocer or upon) denotes the curves resulting from external contact; hypo (unter) those of internal contact with smaller circle rolling; while peri (about) indicates the third possibility as to rolling.

[^11]178. The construction of these curves is in closest analogy to that of the cycloid. If, for example, we desire a major hypocycloid, we first draw two circles, $m V P, m x L$, (Fig. 103), tangent
 internally, of which the rolling circle has its diameter greater than the radius of the fixed circle. Then, as for the cycloid, if the tracing-point is P, we divide the semi-circumference $m V P$ into equal parts, and from the fixed centre, F, describe circles through the points of division, as those through $1,2,3,4$ and 5 . These replace the "lines of level" of the cycloid, and may be called circles of distance, as they show the varying distances of the point P from F, for definite amounts of angular rotation of the former. For if the circle $P V m$ were simply to rotate about R, the point P would reach m during a semi-rotation, and would then be at its maximum distance from F. After turning through the equal arcs $P-1,1-2$, ctc., its distances from F would be $F a$ and $F b$ respectively. If, however, the turning of P about R is due to the rolling of circle $P V m$ upon the are $m x z$, then the actual position of P, for any amount of turning about R, is determined by noting the new position of R, due to such rolling, as R_{1}, R_{2}, etc., and from it as a centre cutting the proper circle of distance by an are of radius $R P$.

Since the radius of the smaller circle is in this case three-fourths that of the larger, the angle $m F z\left(135^{\circ}\right)$, at the centre of the latter, intercepts an are, $m x z$, equal to the $180^{\circ}-\operatorname{arc}, m V P$, on the smaller circle; for equal arcs on unequal circles are subtended by angles at the centre which are inversely proportional to the radii. As a proportion we would have $F m: R m:: 180^{\circ}: 135^{\circ}$. (In an inversc proportion between angles and radii, in two circles, the "means" must belong to one circle and the "extremes" to the other).

While arc $m V P$ rolls upon are $m x z$, the centre R will evidently move over circular arc $R---R_{6}$. Divide $m x z$ into as many equal parts as $m V P$ and draw radii from F to the points of division; these cut the path of centres at the successive positions of R. When are $m 5-4$, for example, has rolled upon its equal $m u v$, then R will have reached $R_{2} ; P$ will have turned about R through angle $P R 2=m R 4$, and will be at n, the intersection of $b f g$-the circle of distance through 2 -by an arc, centre R_{2}, radius $R P$. Similarly for other points.
179. General solution for all trochoidal curves, illustrated by epi- and peri-trochoids. To trace the path of any point on the circumference of a circle so rolling as to give the epi- or peri-cycloid, requires a construction similar at every step to that of the last article. The same remark applies equally to the path of a point within or beyond the circumference of the rolling circle. This is shown in Fig. 104, before describing which in detail, however, we will summarize the steps for any and all trochoids.

Letting P represent the tracing point, R the centre of the rolling circle and F that of the fixed circle, we draw (1) a circle through P, centrc R; (2) a circle (path of centres) through R, centre F; (3) ascertain by a proportion (as described in the last article) how many degrecs of are on either circle are equal to the prescribed are of contact on the other; (4) on the path of centres lay
off-from the initial position of R and in the direction of intended rolling-whatever number of degrees of contact has been assigned or ascertained for the fixed circle, and divide this arc by radii from F into any number of equal parts, to obtain the successive positions of R, as R_{1}, R_{2}, etc.; (5) on the circle through P lay off-from the initial position of P, and in the direction in which it will move when the assigned rolling occurs - the same number of degrees that have been assigned or calculated as the contact are of the rolling circle, and divide such arc into the same number of equal parts that was adopted for the division of the path of centres; (6) through the points of division obtained in the last step draw "circles of distance" with centre F, numbering them from P; (7) finally, to get the successive positions of P, use $R P$ (the "tracing radius") as a constant radius, and cut each circle of distance by an arc from the like-numbered position from R, selecting, of course, the right one of the two points in which said curves will always intersect when not tangent.

In Fig. 104 the path of the point P is determined (a) as carried by the circle called "first generator," rolling on the extcrior of the "first director"; (b) as carried by the "second generator" which rolls on the exterior of the "second director"-which it also encloses. In the first case the resulting curve is a prolate epitrochoid; in the second a curtate peritrochoid; but such values were taken for the diameters of the circles, that P traced the same curve under either condition of rolling.* These (before reduction with the camera) were $3^{\prime \prime}$ and $2^{\prime \prime}$ for first generator and first director,
 respectively.

For the epitrochoid a semi-circle is drawn through P from rolling centre R; similarly with centre ρ for the peritrochoid. Dividing these semi-circles into the same number of equal parts, draw next the dotted "circles of distance" through these points, all from centre F. The figure illustrates the special case where the two sets of "circles of distance" coincide. The various positions of P, as P_{1}, P_{2}, etc., are then located by ares of radii $R P$ or ρP, struck from the successive positions of R or ρ and intersecting the proper "circle of distance."

[^12]For example, the turning of P through the angle $P R 1$ about R would bring P somewhere upon the circle of distance through point 1 ; but that amount of turning would be due to the rolling of the first generator over the are $m Q$, which would bring n upon Q and carry R to $R_{1} ; P$ would therefore be at P_{1}, at a distance $R P^{2}$ from R_{1}, and on the dotted are through 1 . Similarly in relation to ρ. When s reached k, in the rolling, we would find P at P_{2}.

Each position of P is joined with each of the centres from which it could be obtained.

SPECIAL TROCHOIDS.

180. The Ellipse and Straight Line. Two circles are called Cardanic* if tangent internally and the diameter of one is twice that of the other. If the smaller roll in the larger, all points in the plane of the generator will describe ellipses except points on the circumference, each of which will move in a straight line-a diameter of the director. Upon this latter property the mechanism known as "White's Parallel Motion" is based, in which a piston-rod is piroted to a small gear-wheel which rolls on the interior of a toothed annular wheel whose diameter is twice that of the pinion.
181. The Limaçon and Cardioid. The Limaçon is a curve whose points may be obtained by drawing random secants through a point on the circumference of a eirele, and on each laying off a constant distance, on each side of the second point in which the secant euts the circle.

In Fig. 105 let $O v$ and $O d$ be random secants of the cirele Ons; then if $n v, n p, c a$ and $c d$ are each equal to some constant, b, we shall have r, p, a and d as four points of a Limaçon. Refer points on the same secant, as a and d, to O and the diameter $O s$; we then have $O d=\rho=O c+c d=2 r \cos \theta+b$, while $O a=$ $2 r \cos \theta-b$; hence the polar equation is $\rho=2 r \cos \theta \pm b$.

When $b=2 r$ the Limaçon becomes a Cardioid. ${ }^{\dagger}$ (See Fig. 106).

Fisg 105.

182. All Limaçons, general and special, may be generated either as epi-. or peri-trochoidal curves: as epi-trochoids the generator and director must have cqual diameters, any point on the circumference of the generator then tracing a Cardioid, while any point on the radius (or radius produced) deseribes a Limaçon; as peri-trochoids the larger of a pair of Cardanic circles must roll on the smaller, the Cardioid and Limaçon then resulting, as before, from the motion of points respectively on the circumference of the generator, or within or without it.
183. In Fig. 106 the Cardioid is obtained as an epicyeloid, being traced ly point P during one revolution of the generator $P H m$ about an equal directing circle mso.

As a Limaçon we may get points of the Cardioid, as y and z, by drawing a secant through O and laying off $s y$ and $s z$ each equal to $2 r$.
184. The Limaçon as a Trisectrix. Three famous problems of the ancients were the squaring of the circle, the duplication of the cube and the trisection of an angle. Among the interesting eurves invented by early mathematicians for the purpose of solving one or the other of these problems, were the Quadratrix and Conchoid, whose construction is given later in this chapter; but it has been found that certain trochoids may as readily be employed for trisection, among them the Limaçon of Fig. 106, frequently called the Epitrochoidal Trisectrix.

When constructed as a Limaçon we find points as G and X, on any secant $R X$ of the circle called "path of centres," by making $S X$ and $S G$ each equal to the radius of that circle.

[^13]185. To trisect an angle, as $M R F$, by means of this epitrochoid, bisect one side of the angle, as $F R$, at m; use $m R$ and $m F$ as radii for generator and director respectively of an epitroehoid having a tracing radius, $R F$, equal to twice that of the generator. Make $R N=R F$ and draw $N F$; this will eut the Limaçon $F T_{1} R Q$ (traced by point F as earried by the given generator) in a point T_{1}. The angle $T_{1} R F$ will then le one-third of $N R F$, which may be proved as follows: F reaches T_{1} by the rolling of are $m n$ on are $m n_{1}$. These ares are subtended by equal angles, ϕ, the cireles being equal. During this rolling R reaches R_{1}, bringing $R F$ to $R_{1} T_{1}$. In the triangles $T_{1} R_{1} F$ and $R F R_{1}$ the side $F R_{1}$ is common, angles ϕ equal, and side $R_{1} T_{1}$ equal to side $R F$; the line $R T_{1}$ is therefore parallel to $R_{1} F$, whence angle $T_{1} R F$ must also equal ϕ. In the triangle $R F R_{1}$ we denote by θ the angles opposite the equal sides $R F$ and $R_{1} F$; then $2 \theta+\phi=180^{\circ}$, or $\theta=\frac{180^{\circ}-\phi}{2}$. In triangle

$N R F$ we have the angle at F equal to $\theta-\phi$, and $2(\theta-\phi)+x+\phi=180^{\circ}$, which gives $x=2 \phi$, by substituting the value of θ from the previous equation.
186. The Involute. As the opposite extreme of a circle rolling on a straight line we may have the latter rolling on a cirele. In this ease the rolling cirele has an infinite radius. A point on the straiglit line deseribes a curve called the involute. This would be the path of the end of a thread if the latter were in tension while being unwound from a spool.

In Fig. 107 a rule is shown, tangent at u to a circle on which it is supposed to roll. Were a pencil-point inserted in the centre of the eircle at j (which is on the line $u x$ produced) it would trace the involute. When j reaches a, the rule will have had rolling contact with the base circle orer an are $u t s-\cdots$ whose length equals line $u x j$. Were a the initial point, we would obtain b, c,
etc., by making tangent $m b=$ arc $m a$; tangent $n c=\operatorname{arc} n a$. Each tangent thus equals the are from the initial point to the point of tangeney.
187. The circle from which the involute is derived or evolved is called the evolute. Were a hexagon or other figure to be taken as an evolute, a corresponding involute could be derived; but the name "involute," unqualified, is understood to be that obtained from a cirele.

From the law of formation of the involute, the rolling line is in all its positions a normal to the curve; the point of tangency on the crolute is an instantaneous centre, and a tangent at any point, as f, is a perpendicular to the tangent, $f q$, from f to the base circle.

Like the cycloid, the involute is a correct working outline for the teeth of gear-wheels; and gears manufaetured on the involute system are to a considerable degree supplanting other forms.

A surface known as the developable helicoid (see Figs. 209 and 270) is formed by moving a line

```
F=E[107.
```


so as to be always tangent to a given helix. It is interesting in this connection to notice that any plane perpendicular to the axis of the helix would eut such a surface in a pair of involutes.*
188. The Spiral of Archimedes. This curve is generated by a point having a uniform motion around a fixed point-the polc-combined with uniform motion toward or from it.

In Fig. 107, with O as the pole, if the angles θ are equal, and $O D, O E$ and $O y_{s}$ are in arithmetical progression, thien the points D, E and y_{3} are points of an Arehimedean Spiral.

This spiral can be trochoidally generated, simultaneonsly with the involute, by inserting a pencil point at y in a piece earried by-and at right angles with - the rule, the point y being at a distance,

[^14]$x y$, from the contact-edge of the rule, equal to the radius O_{s} of the base circle of the involute; for after the rolling of $u x$ over an are $u t$ we shall have $t x_{1}$ as the portion of the rolling line between x and the point of tangency, and $x y$ will hare reached $x_{1} y_{1}$. If the rolling be continued y will evidently reach O. We see that $O y=u x$, and $O y_{1}=t x_{1}$; but the lengths $u x$ and $t x_{1}$ are proportional to the angular movement of the rolling line about O, and as the spiral may be defined as that curve in which the length of a radius vector is directly proportional to the angle through which it has turned about the pole, the various positions of y are evidently points of such a curve.
189. A Tangent to the Spiral of Archimedes. Were the pole, O, given, and a portion only of the spiral, we could draw a tangent at any point, y_{1}, by determining the circle on which the spiral could be trochoidally generated, then the instantaneous centre for the given position of the tracingpoint, whence the normal and tangent would be derived in the usual way. The radius $O t$ of the base circle would equal $w y$-the difference between two radii vectores $O y$ and $O z$ which include an angle of $57^{\circ} .29+$, (the angle which at the centre of a circle subtends an arc equal to the radius). The instantaneous centre, t, would be the extremity of that radius which was perpendicular to $O y_{1}$. The normal would be $t y_{1}$, and the tangent $T T_{1}$ perpendicular to it.
190. The spiral of Archimedes is the right section of an oblique helicoid. (Art. 357). It is also the proper outline for a cam to convert uniform rotary into uniform rectilinear motion, and when combined with an equal and opposite spiral gives the well-known form called the heart-cam. As usually constructed the acting curve is not the true spiral, but a curve whose points are at a constant distance from the theoretical outline equal to the radius of the friction-roller which is on the end of the piece to be raised. $Q s_{2}$ (Fig. 107) is a small portion of such a "parallel curre."
191. If a point travel on the surface of a cone so as to combine a uniform motion around the axis with a uniform motion toward the vertex it will trace a conical helix, whose orthographic projection on the plane of the base will be a spiral of Archimedes.
. In Fig. 108 a top and front view are given of a cone and helix. The shaded portion is the development of the cone, that is, the area equal to the convex surface, and which-if rolled up-would form the cone. To obtain the development draw an are $A^{\prime} G^{\prime \prime} A^{\prime \prime}$ of radius equal to an element. The convex surface of the cone will then be represented by the sector $A^{\prime} O^{\prime} A^{\prime \prime}$, whose angle θ

may be found by the proportion $O A: O^{\prime} A^{\prime}:: \theta: 360^{\circ}$, since the arc $A^{\prime} G^{\prime \prime} A^{\prime \prime}$ must equal the entire circumference of the cone's base.

The student can make a paper model of the cone and helix by cutting out a sector of a circle,
making allowance for an overlap on which to put the mucilage, as shown by the dotted lines $O^{\prime} y$ and $y v z$ in the figure.

The development of a conical helix is the same kind of spiral as its orthographic projection.
PARALLEL CURVES.
192. A parallel curve is one whose points are at a constant normal distance from some other curve. Parallel curves have not the same mathematical properties as those from which they are derived, except in the case of a circle; this can readily be seen from the cam figure under the last heading, in which a point, as s_{1}, of the true spiral, is located on a line from 0 which is by no means in the direction of the normal to the curve at s_{1}, upon which lies the point s_{2} of the parallel curve.

Instead of actually determining the normals to a curve and on each laying off a constant distance, we may draw many ares of constant radius, having their centres on the original curve; the desired parallel will be tangent to all these ares.

In strictly mathematical language a parallel curve is the envclope of a circle of constant radius whose centre is on the original curve. We may also define it as the locus of consecutive intersections of a system of equal circles having their centres on the original curve.

If on the concex side of the original the parallel will resemble it in form, but if within, the two may be totally dissimilar. This is well illustrated in Fig. 109, in which the parallel to a Lemniscate is shown.

The student will obtain some interesting results by constructing the parallels to ellipses, parabolas and other plane curves.

THE CONCHOLD OF NICOMEDES.

193. The Conchoid, named after the Greek word for shcll,* may be obtained by laying off a constant length on each side of a given line $M N$ (the directrix), upon radials through a fixed point or pole, O (Fig. 110). If $m v=m n=s x$ then v, n and x are points of the curve. Denote $b y$ a the distance of O from $M N$, and use c for the constant length to be laid off; then if $a<c$ there will be a loop in that branch of the curve which is nearest the pole,-the inferior branch. If $a=c$ the curve has a point or cusp at the pole. When $a>c$ the curve has an undulation or wave-form towards the pole.

[^15]$O v=c+O m ; O n=c-O m$; we may therefore express the relation to O of points on the curve by the equation $\rho=c \pm O m=c \pm a \sec \phi$.

194. Mention has already been made (Art. 184) of the fact that this was one of the curves invented in part for the purpose of solving the problem of the trisection of an angle. Were m $O x$ (or ϕ) the angle to be trisected we would first draw $p q r$, the superior branch of a conchoid having the constant, c, equal to twice $O m$. A parallel from m to the axis will intersect the curve at q; the angle $p O q$ will then be one-third of ϕ : for since $b q=2 O m$ we have $m q=2 O m \cos \beta$; also $m q: O m:: \sin \theta: \sin \beta$; hence $20 m \cos \beta: O m:: \sin \theta: \sin \beta$, whence $\sin \theta=2 \sin \beta \cos \beta=\sin 2 \beta \quad$ (from known trigonometric relations). The angle θ is therefore equal to twice β, which makes the latter one-third of angle ϕ.
195. To drav a tanyent and normal at any point v, we find the instantaneous centre o on the principle that it is at the intersection of normals to the paths of two moving points of a line, the distance between said points remaining constant. In tracing the curve, the motion of O (on $O v$) is -at the instant considered-in the direction $O v ; O O$ is therefore the normal. The point m of $O v$ is at the same moment moving along $M \boldsymbol{N}$, for which m_{o} o is the normal. Their intersection o is then the instantancous centre, and $o v$ the normal to the conchoid, with $v z$ perpendicular to $o v$ for the desired tangent.
196. This interesting curve may be obtained as a plane section of one of the higher mathematical surfaces. If two non-intersecting lines - one vertical, the other horizontal-be taken as guiding lines or directrices of the motion of a third straight line whose inclination to a horizontal plane is to be constant, then horizontal planes will cut conchoids from the surface thus generated, while every plane parallel to the directrices will cut hyperbolas. From the nature of its plane sections this surface is called the Conchoidal Hyperboloid. (See Fig. 219).

THE QUADRATRIX OF DINOSTRATUS.

197. In Fig. 111 let the radius $O T$ rotate uniformly about the centre; simultaneously with its movement let $M N$ have a uniform motion parallel to itself, reaching $A B$ at the same time with radius $O T$; the locus of the intersection of $M N$ with the radius will be the Quadratrix. Points
exterior to the circle may be found by prolonging the radii while moving $M N$ away from $A B$. As the intersection of $M N$ with $O B$ is at infinity, the former becomes an asymptote to the curve as often as it moves from the centre an additional amount equal to the diameter of the circle; the number of branches of the Quadratrix may therefore be infinite. It may be proved analytically that the curve crosses $O A$ at a distance from O equal to $2 r \div \pi$.
198. To trisect an angle, as TOa, by means of the Quadratrix, draw the ordinate $a p$, trisect $p T$ by s and x and draw $s c$ and $x m$; radii $O c$ and $O m$ will then divide the angle as desired: for by the conditions of generation of the curve the line $M N$ takes three equidistant parallel positions while the radius describes three equal angles.

TIIE CISSOID OF DIOCLES.
199. This curve was devised for the purpose of obtaining two mean proportionals between two given quantities, by means of which the duplication of the cube might be effected.

The name was suggested by the Greek word for ivy, since "the curve appears to mount along its asymptote in the same mamer as that parasite plant climbs on the tall trunk of the pine."*

This was one of the first curves invented after the discovery of the conic sections. Let C (Fig. 112) be the centre of a circle, ACE a right angle, $N S$ and $M T$ any pair of ordinates parallel to Fizs. 112.

and equidistant from $C E$; then a secant from A through the extremity of either ordinate will meet the other ordinate in a point of the cissoid. $A T$ and $N S$ give $P ; A S$ and $M T$ give Q.

The tangent to the circle at B will be an asymptote to the curve.
It is a somewhat interesting coincidence that the area between the cissoid and its asymptote is the same as that between a cycloid and its base, viz., three times that of the circle from which it is derived.
200. Sir Isaac Newton devised the following method of obtaining a cissoid by continuous motion: Make $A V=A C$; then move a right-angled triangle, of base $=V C$, so that the vertex F travels along

[^16]the line $D E$ while the edge $J K$ always passes through V; then the middle point, L, of the base $F J$, will trace a cissoid. This construction enables us readily to get the instantaneous centre and a tangent and normal; for $F n$ is normal to $F C$ - the path of F, while $n V$ is normal to the motion of J toward $J V$; the instantaneous centre n is therefore at the intersection of these normals. For any other point as P we apply the same prineiple thus: With radius $A C$ and centre P obtain x; draw $P x$, then $V z$ parallel to it; a vertical from x will meet $V z$ at the instantaneous centre y, whence the normal and tangent result in the usual way. The point y does not necessarily fall on $n V$.

Since $n V$ and $F J$ are perpendicular to $J V$ they are parallel. So also must $V z$ be parallel to $P x$, regardless of where P is taken.
201. Two quantities m and n will be mean proportionals between two other quantities a and b if $m^{2}=n a$ and $n^{2}=m b$; that is, if $m^{3}=a^{2} b$ and if $n^{3}=a b^{2}$.

If $b=2 a$ we will find, from the relation $m^{3}=a^{2} b$, that m will be the edge of a cube whose volume equals $2 a^{3}$.

To get two mean proportionals between quantities, r and b, make the smaller, r, the radius of a circle from which derive a cissoid. Were $A P R$ the derived curve we would then make $C t$ equal to the second quantity, b, and draw $B t$, eutting the cissoid at Q. A line $A Q$ would eut off on $C t$ a distance $C v$ equal to m, one of the desired proportionals; for m^{3} will then equal $r^{2} b$, as may be thus shown by means of similar triangles:

$$
\begin{align*}
& C v: M Q: C A: M A \text { whence } C v^{3}=\frac{r^{3} \cdot M Q^{3}}{M A^{3}} \text {. (1) } \tag{1}\\
& C t: M Q:: C B: B M \quad \text { " } C t=\frac{r . M Q}{B M} \tag{2}\\
& M Q: M A:: S N: A N:: \sqrt{A N . B N: A N} \text {, whence } M Q=\frac{M A \sqrt{A N} \cdot B N}{A N} \tag{3}\\
& \text { From (2) we have } M Q=\frac{B M(C t=b)}{r} \tag{4}\\
& \text { " (3) " " } M Q^{2}=\frac{M A^{2}(A N \cdot B N)}{A N^{2}} \tag{5}\\
& M Q: M A:: S N: A N:: \sqrt{A N B N: A N} \text {, whence } M Q=\frac{M A \sqrt{A N} \cdot B N}{A N} \\
& \text { From (2) we have } M Q=\frac{B M(C t=b)}{r} \\
& \text { " (3) " } M Q^{2}=\frac{A N^{2}}{}
\end{align*}
$$

Replacing $M Q^{3}$ in equation (1) by the product of the second members of equations (4) and (5) gives $C v^{3}$ (i.e., m^{3}) $=r^{2} b$.

By interehanging r and b we obtain n, the other mean proportional; or it might be obtained by construeting similar triangles having r, b and m for sides.
the tractrix.
202. The Tractrix is the involute of the curve called the Catenary (Art. 214) yet its usual construction is based on the fact that if a series of tangents be drawn to the curve, the portions of such tangents between the points of tangency and a given line will be of the same length; or, in other words, the intercept on the tangent, betwcen the directrix and the eurve, will be constant. A practical and very elose approximation to the theoretical curve is obtained by taking a radius $Q R$ (Fig. 113) and with a centre a, a short distance from R on $Q R$, obtaining b, which is then joined with a. On $a b$ a centre c is similarly taken for another are of the same radius, whence $c d$ is obtained. A sufficient repetition of this process will indicate the curve by its enveloping tangents, or a eurve may actually be drawn tangent to all these lines. Could we take a, b, c, etc., as mathematically consecutive points the curve would be theoretically exact. The line $Q S$ is an asymptote to the curve.

The area between the completed branch $R P S$ and the lines $Q R$ and $Q S$ would be equal to a quadrant of the circle on radius $Q R$.

R 203. The surface generated by revolving the tractrix about its asymptote has been employed for the foot of a vertical spindle or shaft, 'and is known as Schiele's Anti-Frietion Pivot. The step for such a pivot is shown in sectional view in the left half of the figure. Theoretically, the amount of work done in overcoming friction is the same on all equal areas of this surface.

In the case of a bearing of the usual kind, for a cylindrical spindle, although the pressure on each square inch of surface would be constant, yet, as unit areas at different distances from the centre would pass over very different amounts of space in one revolution, the wear upon them would be necessarily unequal. The rationale of the tractrix form will become evident from the following consideration: If about to split a \log, and having a choice of wedges, any boy would choose a thin one rather than one with a large angle, although he might not be able to prove by graphical statics the exact amount of advantage the one would have over the other. The theory is very simple, however, and the student may profitably be introduced to it. Suppose a ball, c, (Fig. 114) struck at the same instant by two others, a and b, moving at rates of six and eight feet a second respectively. On $a c$ and $b c$ prolonged take $c e$ and $c h$ equal, respectively, to six and eight units of
 some scale; complete the parallogram having these lines as sides; then it is a well-known principle in meehanies* that $c d$-the diagonal of this parallelogram - will not only represent the direction in which the ball c will move, but also the distancein feet, to the scale chosen-it will travel in one second. Evidently, then, to balance the effect of balls a and b upon c, a fourth would be necessary, moving from d toward c and traversing $d c$ in the same second that a and b travel, so that impact of all would oceur simultaneously. These forees would be represented in direction and magnitude (to some seale) by the shaded triangle $c^{\prime} d^{\prime} e^{\prime}$, which illustrates the very important theorem that if the three sides of a triangle-taken like $c^{\prime} e^{\prime}, e^{\prime} d^{\prime}, d^{\prime} c^{\prime}$, in such order as to bring one back to the initial vertex mentioned-represent in magnitude and direction three forees acting on one point, then these forees are balanced.

Fis. 115.
 wedge, (Fig. 115) and denoting the foree of the supposed equal blows by F in each triangle, we see that the pressures are greater for the thin wedge than for the other; that is, the less the inclination to the rertical the greater the pressure. A pivot so shaped that as the pressure between it and its step increased the area to be traversed diminished would therefore, theoretically, be the ideal; and the rate of change of curvature of the tractrix, as its generating point approaches the axis, makes it, obviously, the correct form.

[^17]204. Navigator's charts are usually made by Mercator's projection (so-called, not being a projection in the ordinary sense, but with the extended signification alluded to in the remark in Art. 2). Maps thus constructed have this advantageous feature, that rhumb lines or loxodromics - the curves on a sphere that cut all moridians at the same angle - are represented as strcight lines, which ean only be the case if the meridians are indicated by parallel lines. The law of eonvergence of meridians on a sphere is, that the length of a degree of longitude at any latitude equals that of a degree on the equator multiplied by the cosine (see foot-note, p. 31) of the latitude; when the meridians are made non-eonvergent it is, therefore, manifestly necessary that the distance apart of originally equidistant parallels of latitude must increase at the same rate; or, otherwise stated, as on Mercator's chart degrees of longitude are all made equal, regardless of the latitude, the constant length representative of such degrec bears a varying ratio to the actual are on the sphere, being greater with the increase in latitude; but the greater the latitude the less its cosine or the greater its secant; hence lengths representative of degrees of latitude will increase with the sccant of the latitude. Tables have been constructed giving the increments of the secant for each minute of latitude; but it is an interesting fact that they may be derived from the Tractrix thus: Draw a circle with radius $Q R$, centre Q (Fig. 113); estimate latitude on such circle from R upwarl; the intercept on $Q S$ between consecutive tangents to the Tractrix will be the increment for the are of latitude included between parallels to $Q S$, drawn through the points of contact of said pair of tangents.*

On map construction the student is referred to Chapter XII, or to Craig's Treatise on Projections.

```
TllE WITCll OF AGNESI.
```

205. If on any line $S Q$, perpenclicular to the diameter of a circle, a point S be so located that $S Q: A B:: P Q: Q B$ then S will be a point of the curve called the Hitch of Agnesi. Such point is evidently on the ordinate $P Q$ prolonged, and vertically below the intersection T of the tangent at A by the sccant through P.

The point E, at the same level as the centre O, is a diameter's distance from the latter.
The tangent at B is an asymptote to the curve.
The area between the curve and its asymptote is four times that of the circle involved in its construction.

The Witch, also called the J'rsiera, was devised by Donna Maria Gaetana Agnesi, a brilliant Italian lady who was appointed in 1750 , by Pope Bencdict XIV, to the professorship of mathematics and philosophy in the University of Bologna.

THE CARTESIAN OVAL.

206. This curve, also called simply a Cartesian, after its investigator, Descartes, has its points connected with two foci, F^{\prime} and $F^{\prime \prime}$, by the relation $m \rho^{\prime} \pm n \rho^{\prime \prime}=k c$, in which e is the distance between the foci, while m, n and k are constant factors.
[^18]Salmon states that we owe to Chasles the proof that a third focus may be found，sustaining the
 same relation，and expressed by an equation of similar form．（See Art．209）．

The Cartesian is symmetrieal with respeet to the axis－the line joining the foci．

207．To construct the curve from the first equation we may for convenience write $m \rho^{\prime} \pm n \rho^{\prime \prime}=k \cdot c$ in the form $\rho^{\prime} \pm \frac{n}{m} \rho^{\prime \prime}=\frac{k c}{m}$ ；or by denoting $\frac{n}{m}$ by b and $\frac{k c}{m}$ by d ，it takes the yet more simple form $\rho^{\prime} \pm b \rho^{\prime \prime}=d$ ．Then $\rho^{\prime \prime}$ will have two values，aceording as the positive or negative sign is taken，being respectively $\frac{d-\rho^{\prime}}{b}$ and $\frac{\rho^{\prime}-d}{b}$ ；the former is for points on the inner of the two ovals that constitute a complete Cartesian，while the latter gives points on the meter curve．

To obtain $\rho^{\prime \prime}=\frac{\pi-\rho^{\prime}}{b}$ take F^{\prime} and $F^{\prime \prime}$（Fig． 118）as foci；$F^{\prime \prime} S=d ; S K$ at some random acute angle θ with the axis，and make $S H=\frac{d}{b}$ ；that is，make $F^{\prime} S: S H:: b: 1$ ．Then from F^{\prime} draw an are $t f P$ ，of radius less than d ，and cut it at P by an arc from centre $F^{\prime \prime}$ ，radius $S T, T t$ being a parallel to $F^{\prime} H$ ；then P is a point of the inner oval；for $S t=l-\rho^{\prime}$ ，and $S T=\rho^{\prime \prime}$ ；there－ fore $\rho^{\prime \prime}: l-\rho^{\prime}:: \frac{d}{b}: d$ ，whence $\rho^{\prime \prime}=\frac{d-\rho^{\prime}}{b}$ ．

208．If an are $x y K$ be drawn from F^{\prime} ，with radius，$F^{\prime} x$ ，greater then d ，we may find the seeond
 value of $\rho^{\prime \prime}$ ，viz．，$\frac{\rho^{\prime}-l}{b}$ ，by drawing $x Q$ parallel to $F^{\prime} H$ to meet $H S^{\prime}$ prolonged；for $Q S$ will equal $\frac{\rho^{\prime}-d}{b}$ ，in which $\rho^{\prime}=F^{\prime} x$ ．Again using $F^{\prime \prime}$ as a centre，and a radius $Q S=\rho^{\prime \prime}$ ，gives points R and M of the larger oval．

The following are the values for the focal radii to the four points where the ovals cut the axes．（See Fig．117）．

$$
\begin{aligned}
& \text { For } A, \quad \rho^{\prime \prime}=\frac{\rho^{\prime}-d}{b}=c+\rho^{\prime} \text { whence } \rho^{\prime}=F^{\prime} A=\frac{d+b c}{1-b} \\
& \text { " } \quad a, \quad \rho^{\prime \prime}=\frac{d-\rho^{\prime}}{b}=c+\rho^{\prime} \quad \text { " } \quad \rho^{\prime}=F^{\prime} \quad a=\frac{d-b c}{1+b} \\
& \text { " } B, \quad \rho^{\prime \prime}=\frac{\rho^{\prime}-d}{b}=c-\rho^{\prime} \quad " \quad \rho^{\prime}=F^{\prime} B=\frac{d+b c}{1+b} \\
& \text { " } \quad b, \quad \rho^{\prime \prime}=\frac{d-\rho^{\prime}}{b}=c-\rho^{\prime} \quad \text { " } \quad \rho^{\prime}=F^{\prime} \quad b=\frac{l-b c}{1-b}
\end{aligned}
$$

The eonstruction－arcs for the outer oval must evidently have radii bctucen the values of ρ^{\prime} for A and B above；and for the inner oval between those of a and b ．

The numerical values from which Fig. 118 was constructed were $m=3 ; n=2 ; e=1 ; k=3$.
209. The Third Foous. Fig. 118 illustrates a special ease, but, in general, the method of finding a third focus $F^{\prime \prime \prime}$ (not shown) would be to draw a random secant $F^{\prime} r$ through F^{\prime}, and note the points P and G in which it cuts the ovals-these to be taken on the same side of F^{\prime}, as two other points of intersection are possible; a circle through P, G and $F^{\prime \prime}$ would cut the axis in the new focus sought. Then denoting by C the distance $F^{\prime} F^{\prime \prime \prime}$, we would find the factors of the original equation appearing in a new order; thus, $k \rho^{\prime} \pm n \rho^{\prime \prime \prime}=m C$, which-for purposes of constructionmay be written $\rho^{\prime} \pm b^{\prime} \rho^{\prime \prime \prime}=d^{\prime}$.

If obtained from the foci $F^{\prime \prime}$ and $F^{\prime \prime \prime}$ the relation would be $m \rho^{\prime \prime \prime}-k \rho^{\prime \prime}= \pm n C^{\prime}$, in which $C^{\prime \prime}$ equals $F^{\prime \prime \prime} F^{\prime \prime \prime}$. Writing this in the form $\rho^{\prime \prime \prime}-B \rho^{\prime \prime}= \pm D$ we have the following interesting cases: (a) an cllipse for D positive and $B=-1$; (b) an hyperbola for D positive and $B=+1$; (c) a limaron for $D=C^{\prime} B$; (d) a curdioid for $B=+1$ and $D=C^{\prime}$.
210. The following method of drawing a Cartesian by continuous motion was devised by Prof. Hammond: A string is wound, as shown, around two pulleys turning on a common axis; a pencil at P holds the string tant around smootl pegs placed at random at F_{1} and F_{2}; if the wheels be turned with the same angular velocity, and the pencil does not slip on the string, it will trace a Cartesian having F_{1} and F_{2}^{\prime} as foci.*

If the pulleys are equal the Cartesian will become an ellipse; if both threads are wound the same way around either one of the wheels the resulting curve will be
 an hyperbola.
211. It is a well-known fact in Optics that the incident and reflected ray make equal angles with the normal to a reflecting surface. If the latter is curced then each reflected ray euts the one
 next to it, their consecutive intersections giving a curve called a caustic by reflection. Probally all have oceasionally noticed such a curve on the surface of the milk in a glass, when the light was properly placed. If the reflecting curve is a eirele the caustic is the erolute of a limaçon.

In passing from one medium into another, as from air into water, the deflection which a ray of light undergoes is called refruction, and for the same media the ratio of the sines of the angles of incidence and refraction (θ and ϕ, Fig. 120) is constant. The consecutive intersections of refrocted rays give also a caustie, which, for a circle, is the evolute of a Cartesiun Oval. The proof of this statement ${ }^{+}$involves the property upon which is based the most convenient method of drawing a tangent to the Curtesian, viz., that the normal at any point divides the angle between the focal radii into parts whose sines are proportional to the factors of those radii in the equation. If, then, we have obtained a point G on the outer oral from the relation $m \rho^{\prime} \pm n \rho^{\prime \prime}=k c$, we may obtain the tangent at G by laying off on ρ^{\prime} and $\rho^{\prime \prime}$ distances proportional to m and n, as $G r$ and $G h$, Fig. 118, then bisecting $r h$ at j and drawing the normal $G j$, to which the desired tangent is a perpendicular:

At a point on the inner oval the clistance would not be laid off on a focal radius produced, as in the case illustrated.

[^19]
CASSIAN OVALS.

212. In the Cassian Ovals or Orals of Cassini the points are connected with two foci by the relation $\rho^{\prime} \rho^{\prime \prime}=k^{2}$, i. e., the product of the focal radii is equal to some perfect square. These curves have already been alluded to in Art. 114 as plane sections of the annular torus, taken parallel to its axis.

Fis. 121.

In Art. 158 one form-the Lemniscate-receives special treatment. For it the constant k^{2} must equal m^{2}, the square of half the distance between the foci. When k is less than m, the eurve becomes two separate ovals.
213. The general construction depends on the fact that in any semicircle the square of an ordinate equals the product of the segments into which it divides the diameter. In Fig. 122 take F_{1} and F_{2} as the foci, erect a perpendicular $F_{1} S$ to the axis $F_{1} F_{2}$, and on it lay off $F_{1} R$ equal to the constant, k. Bisect $F_{1} F_{2}$ at O and draw a semicircle of radius $O R$. This cuts the axis at A and B, the extreme points of the curve; for $k^{2}=F_{1} A \times F_{1} B$. Any other point T may be obtaincd by drawing from F_{1} a circular arc of radius $F_{1}^{\prime} t$ greater than $F_{1} A$; draw $t R$, then $R x$ perpendicular to it; $x F_{1}$ will then be the $\rho^{\prime \prime}$, and $F_{1} t$ the ρ^{\prime}, for four points of the curve, which will be at the intersection of arcs struck from F_{1} and F_{2} as centres and with those radii.

To get a normal at any point T draw $O T$, then make angle $F_{2} T s=\theta=F_{1} T O$; $T s$ will be the desired line.
the catenary.
214. If a flexible chain, cable or string, of uniform weight per unit of length, be freely suspended by its extremitics, the curve which it takes under the action of gravity is called a Catenary, from catena, a chain.

A simple and practical method of obtaining a catenary on the drawing-board, would be to insert two pins in the board, in the desired relative position of the points of suspension, and then attach to them a string of the desired length. By holding the board vertically, the string would assume the catenary, whose points could then be located with the pencil and joined in the usual manner with the irregular curve. Otherwise, if its points are to be located by means of an equation, we take axes in the plane of the curve, the y-axis (Fig. 123) being a vertical line through the lowest point T of the catcnary, while the x-axis is a horizontal line at a distance m below T. The quantity m is called the paramcter of the curve, and is equal to the length of string which represents the tension at the lowest point.

The equation of the catenary ${ }^{1}$ is then $y=\frac{m}{2}\left(e^{\frac{x}{m}}+e^{-\frac{x}{m}}\right)$ in which e is the base of Napierian logarithms ${ }^{2}$ and has the numerical value $2.7182818+$.

By taking successive values of x equal to $m, 2 m, 3 m$, etc., we get the following values for y :
$x=m \ldots y=\frac{m}{2}\left(e+\frac{1}{e}\right)$ which for $m=$ unity becomes 1.54308 $x=2 m \ldots y=\frac{m}{2}\left(e^{2}+\frac{1}{e^{2}}\right) \quad$ " \quad " \quad " $\quad 3.76217$
$x=3 m \ldots y=\frac{m}{2}\left(e^{3}+\frac{1}{e^{3}}\right) \quad$ " \quad " \quad " \quad " 10.0676 $x=4 m \ldots y=\frac{m}{2}\left(e^{4}+\frac{1}{e^{4}}\right) \quad$ " \quad " \quad " \quad " 27.308

To construct the curve we therefore draw an arc of radius $O B=m$, giving T on the axis of y as the lowest point of the curve.

For $x=O B=m$ we have $y=B P=1.54308 ;$ for $x=O a=\frac{m}{4}$ we have $y=a n=1.03142$.
The tension at any point P is equal to the weight of a piece of rope of length $B P=P C+m$.
At the lowest point the tangent is horizontal. The length of any arc $T P$ is proportional to the angle θ between $T C$ and the tangent $P V$ at the upper extremity of the arc.
215. If a circle $R L B$ be drawn, of radius equal to m, it may be shown analytically that tangents $P S$ and $Q R$, to catenary and circle respectively, from points at the same level, will be parallel: also that $P S$ equals the catenary-arc $P r T ; S$ therefore traces the involute of the catenary, and as $S B$ always equals $R O$ and remains perpendicular to $P S$ (angle $O R Q$ being always 90°) we have the curve $T S K$ fulfilling the conditions of a tractrix. (See Art. 202.)

If a parabola, having a focal distance m, roll on a straight line, the focus will trace a catenary having m for its parameter.

The catenary was mistaken by Galileo for a parabola. In 1669 Jungius proved it to be neither a parabola nor hyperbola, but it was not till 1691 that its exact mathematical nature was known, being then established by James Bernouilli.

THE LOGARITHMIC OR EQUIANGULAR SPIRAL.
216. In Fig. 124 we have the curve called the Logarithmic Spiral. Its usual construction is based on the property that any radius vector, as ρ, which bisects the angle between two other radii, $O M$ and $O N$, is a mean proportional between them; i. e., $\rho^{2}=O S^{2}=O M \times O N$.

If M and G are points of the spiral we may find an intermediate point K by drawing the ordinate $O K$ to a semicircle of diameter $O M+O G$; a perpendicular through G to $G K$ will then give D, another point of the curve, and this construction may be repeated indefinitely.

Radii making equal angles with each other are evidently in geometrical progression.
This spiral is often called Equiangular from the fact that the angle is always the same between

[^20]a radius vector and the tangent at its extremity. Upon this property is based its use as the outline for spiral cams and for lobed wheels. The curve never reaches the pole.

The name logarithmic spiral is based on the property that the angle of revolution is proportional to the logarithm of the radius vector. This is expressed by $\rho=a^{\theta}$, in which θ is the varying angle, and a is some arbitrary constant.

To construct a tangent by calculation, divide the hyperbolic logarithm ${ }^{1}$ of the ratio $O M: O K$ (which are any two radii whose values are known) by the angle between these radii, expressed in circular measure; ${ }^{2}$ the quotient will be the tangent of the constant angle of obliquity of the spiral.
217. Among the more interesting propertics of this curve are the following:

Its involute is an equal logarithmic spiral.
Were a light placed at the pole, the caustic - whether by reflection or refraction-would be a logarithmic spiral.

The discovery of these properties of recurrence led James Bernouilli to direct that this spiral be engraved on his tomb, with the inscription-Eadem Mutata Resurgo, which, freely translated, is -I shall arise the same, though changed.

Kepler discorered that the orbits of the planets and comets were conic sections having a focus at the centre of the sun. Newton proved that they would have described logarithmic spirals as they travelled out into space, had the attraction of gravitation been inversely as the cube instead of the square of the distance.

THE HYPERBOLIC OR RECIPROCAL SPIRAL.
218. In this spiral the length of a radius vector is in inverse ratio to the angle through which it turns. Like the logarithmic spiral, it has an infinite number of convolutions about the pole, which it never reaches.

The invention of this curve is attributed to James Bernouilli, who showed that Newton's conclusions as to the logarithmic spiral (see Art. 217) would also hold for the hyperbolic spiral, the initial velocity of projection determining which trajectory was described.

To obtain points of the curve divide a circle $m 58$ (Fig. 125) into any number of equal parts, and on some initial radius 0 m lay off some unit, as an inch; on the second radius $O 2$ take
 $\frac{O n}{2}$; on the third $\frac{O n}{3}$, etc. For one-half the angle θ the radius vector would evidently be $20 n$, giving a point s outside the circle.

The equation to the curve is $\frac{1}{r}=a \theta$, in which r is the radius vector, a some numerical constant, and θ is the angular rotation of r (in circular measure) estimated from some initial line.

[^21]The curve has an asymptote parallel to the initial line, and at a distance from it equal to $\frac{1}{a}$ units.

Fig. 120.

To construct the spiral from its equation, take O as the pole (Fig. 26); $O Q$ as the initial line; a, for convenience, some fraction, as $\frac{1}{4}$; and as our unit some quantity, say half an inch, that will make $\frac{1}{a}$ of convenient size. Then, taking $Q O$ as the initial line, make $O P=\frac{1}{a}=2^{\prime \prime}$, and draw $P R$ parallel to $O Q$ for the asymptote. For $\theta=1$, that is, for arc $K H=$ radius $O H$, we have $r=\frac{1}{a}=2^{\prime \prime}$, giving H for one point of the spiral. Writing the equation in the form $r=\frac{1}{a} \cdot \frac{1}{\theta}$, and expressing various values of θ in circular measure we get the following:

$$
\begin{array}{ll}
\theta=30^{\circ}=0.5236 ; r=O M=3 \prime \prime 8+: & \theta=45^{\circ}=0.7854 ; r=O N=2 \prime \prime 55 ; \\
\theta=90^{\circ}=1.5708 ; r=O S=1^{\prime \prime} 2+: & \theta=180^{\circ}=3.14159 ; r=O T=.6366, \text { etc. }
\end{array}
$$

The tangent to the curve at any point makes with the radius vector an angle ϕ, which is found by analysis to sustain to the angle θ the following trigonometrical relation, tan $\phi=\theta$; the circular measure of θ may therefore be found in a table of natural tangents, and the corresponding value of ϕ obtained.

THE LITUUS.-THE IONIC VOLUTE.

219. The Lituus is a spiral in which the radius vector is inversely proportional to the square root of the angle through which it has revolved. This relation is shown by the equation $r=\frac{1}{a \sqrt{ } \sqrt{\theta}}$, also written $a^{2} \dot{\theta}=\frac{1}{r^{2}}$

When $\theta=0$ we find $r=\infty$, which makes the initial line an asymptote to the curve.
In Fig. 127 take $O Q$ as the initial line, O as the pole, $a=2$, and as our unit $3^{\prime \prime}$; then $\frac{1}{a}=1 \frac{1}{2}{ }^{\prime \prime}$.

For $\theta=90^{\circ}=\pi$ (in circular measure 1.5708) we have $r=O M=1^{\prime \prime} .2+$. For $\theta=1$ we have the radius $O T$ making an angle of 57°. 29 + with the initial line, and in length equal to $\frac{1}{a}$ units,
i. e., $1^{\frac{1}{2}}{ }^{\prime \prime}$. For $\theta=45^{\circ}=\frac{\pi}{4}$ (or 0.7854) r will be $O R=1^{\prime \prime} .7+$. Then $O H=\frac{O R}{2}$; for in rotating to $O H$ the radius vector passes over four 45° angles, and the radius must therefore be one-
 half what it was for the first 45° described. Similerly, $O K=\frac{O M}{2} ; O M=\frac{O V}{2}$, etc.; this relation enabling the student to locate any number of points.

To draw a tangent to the curve we employ the relation $\tan \phi=2 \theta, \phi$ being the angle made by the tangent line with the radius vector, while θ is the angular rotation of the latter, in circular measure.

Architectural Scrolls.-The Ionic Volute. The Lituus and other spirals are occasionally employed as volutes and other architectural ornaments. In the former application it is customary for the spiral to terminate on a circle called the eye, into which it blends tangentially.

Usually, in practice, circular-arc approximations to true spiral forms are employed, the simplest of which, for the scroll on the capital of an Ionic column, is probably the following:

Taking $A O P$, the total height of the volute, at sixteen of the eighteen "parts" into which the module (the unit of proportion $=$ the semi-diameter of the column) is divided, draw the circular eye with radius equal to one such part, the centre dividing $A P$ into segments of seven and nine parts respectively. Next inscribe in the eye a square with one diagonal vertical; parallel to its sides draw (see enlarged square $m n o p$) 2-4 and $3-1$, and divide cach into six equal parts, which number up to twelve, as indicated. Then (returning to main figure) the arc $A B$ has centre 1 and radius $1-A$. With 2 as a centre draw are $B C$; then $C D$ from centre 3 , etc.

In the complete drawing of an Ionic column the centre of the eye would be at the intersection of a vertical line from the lower extremity of the cyma reversa with a hori-
 zontal through the lower line of the echinus. To complete the scroll a second spiral would be required, constructed according to the same law and beginning at Q, where $A Q$ is equal to one-half part of the module.

CHAPTER VI.

TINTING-FLAT AND GRADUATED. - MASONRY, TILING, WOOD GRAINING, RIVER-BEDS AND OTHER SECTIONS, WITH BRUSH ALONE OR IN COMBINED BRUSH AND LINE WORK.
220. Brush-work, with ink or colors, is either flat or graduated. The former gives the effect of a flat surface parallel to the paper on which the drawing is made, while graded tints either show curvature, or -if indicating flat surfaces-represent them as inclined to the paper, i. e., to the plane of projection. For either, the paper should be, as previously stated (Arts. 41 and 44) cold-yressed and stretched.

The surface to be tinted should not be abraded by sponge, knife or rubber.
221. The liquid employed for tinting must be free from sediment; or at least the latter, if present, must be allowed to settle, and the brush dipped only in the clear portion at the top. Tints may, therefore, best be mixed in an artist's water-glass, rather than in anything shallower. In case of several colors mixed together, however, it would be necessary to thoroughly stir up the tint each time before taking a brushful.

A tint prepared from a cake of high-grade India ink is far superior to any that can be made by using the ready-made liquid drawing inks.
222. The size of brush should bear some relation to that of the surface to be tinted; large brushes for large surfaces and vice versa $>$ The customary error of beginners is to use too small and too dry a brush for tinting, and the reverse for shading.
223. Harsh outlines are to be avoided in brush work, especially in handsomely shaded drawings, in which, if sharply defined, they would detract from the general effect. This will become evident on comparing the spheres in Figs. 1 and 4 of Plate II.

Since tinting and shading can be successfully done, after a little practice, with only pencilled limits, there is but little excuse for inking the boundaries; but If, for the sake of definiteness, the outlines are inked all it should be before the tinting, and in the finest of lines, preferably of "water-proof" ink; although any ink-will do-prorided \& soft sponge and plenty of clean water be US applied to remove any excess that will "run." The sponge is also to be the main reliance of the draughtoman for the correction of errors in brush work; the water, however, and not the friction to be the active agent. An entire tint may be removed in this way in case it seems desirable.
224. When beginning work incline the board at a small angle, so that the tint will flow down after the brush. For a flat, that is, a uniform tint, start at the upper outline of the surface to be covered, and with a brush full, yet not surcharged-which would prevent its coming to a good point pass lightly along from left to right, and on the return carry the tint down a little farther, making short, quick strokes, with the brush held almost perpendicular to the paper. Advance the tint as evenly as possible along a horizontal line, work quickly between outlines, but more slowly along outlines, as one should never overrun the latter and then resort to "trimming" to conceal lack of skill. It is possible for any one, with care and practice, to tint to yet not over boundaries.

+ The advancing edge of the tint must not be allowed to dry until the lower boundary is rached.

No portion of the paper, however small, should be missed as the tint advances, as the work is lik \wedge^{\top} to be spoiled by retouching.
whould any excess of tint be found along the lower edge of the figure it should be absorbed y the brush, after first removing the latter's surplus by means of blotting paper.
. To get a dark effect several medium tints laid on in succession, each one drying before the next is applied, give better results than one dark one.

The heightened effect described in Art. 72, viz., a line of light on the upper and left-hand edges, may be obtained either (a) by ruling a broad line of tint with the drawing-pen at the desired distance from the outline, and instantly, before it dries, tinting from it with the brush; or (b) by ruling the line with the pen and thick Chinese White.
225. A tint will spread much more evenly on a targe surface if the paper be first slightly dampened with clean water. As the tint will follow the water, the latter should be limited exactly to the intended outlines of the final tint.

226. Of the colors frequently used by engineers and architects those which work best for flat effects are carmine, Prussian blue, burnt sienna and Payne's gray. Sepia and Gamboge, are, fortunately, rarely required for uniform tints; but the former works ideally for shading by the "dry" process described in the next article; and its rich brown gives effeets unapproachable with anything else. It has, however, this peculiarity, that repeated touches upon a spot to make it darker produce the opposite effect, unless enough time elapses betreen the strokes to allow each addition to dry thoroughly.
227. For elementary practice with the brush the student should lay flat washes, in India tints, on from six to ten rectangles, of sizes between $2^{\prime \prime} \times G^{\prime \prime}$ and $6^{\prime \prime} \times 10^{\prime \prime}$. If successful with these his next work may be the reproduction of Fig. 128, in which H, V, P and S denote horizontal, vertical, profile and section planes respectively. The figure should be considerably enlarged.

The plane V may have two washes of India ink; H one of Prussian blue; P one of burnt sienna, and S one of carmine.

The edges of the planes H, V and P are either vertical or inclined 30° to the horizontal.

For the section-plane assume n and m at pleasure, giving direction $n m$, to which $J R$ and $T X$ are parallel. A horizontal, $m z$, through m gives z. From n a horizontal, $n y$, gives y, $a b$. Joining y with z gives the "trace" of S on V.
228. Figures 129 and 130 illustrate the use of the brush in the representation of masonr. The former may be altogether in ink tints, or in medium burnt umber for the front rectangle ot
프․ 129.

each stone, and dark tint of the same, directly from the cake, for the bevel. Lightly pencilled limits of bevel and rectangle will be needed; no inked outlines required or desirable.

The last remark applies also to Fig. 130, in which "quarry-facel" ashlar masonry is represented. If properly done, in either burnt umber or sepia, this gives a result of great beauty, especially effective on the piers of a large drawing of a bridge.

The darker portions are tinted directly from the cake, and are purposely made irregular and "jagged" to reproduce as closely as possible the fractured appearance of the stone.

$$
\text { Iser } 130 \text {. }
$$

Two brushes are required when an "over-hang" or jutting portion is to be represented, one with a medium tint, the other with the thick color, as before. An irregular line being made with the latter, the tint is then softened out on the lower side with the point of the brush having the lighter tint. A light wash of the intended tone of the whole mass is quickly laid over each stone, either before or after the irregularities are represented, according as an exceedingly angular or a somewhat softened and rounded effect is desired.
229. Designs in tiling are excellent exercises, not only for brush work in flat tints, but also-in their preliminary construction-in precision of line work. The superbly illustrated eatalogues of the Minton Tile Works are, unfortunately, not accessible by all students, illustrating as they do, the finest and most varied work in this line, both of designer and chromo-lithographer; but it is quite within the bounds of possibility for the careful draughtsman to closely approach if not equal the standard and general appearance of their work, and as suggestions therefor Figs. 131 and 132 are presented.
230. In Fig. 131 the upper boundary, $a d h k$, of a rectangle is divided at a, b, c, etc., into equal spaces, and through each point of division two lines are drawn with the 30° triangle, as $b x$ and $b r$ through b. The oblique lines terminate on the sides and lower line of the rectangle. If the work is accurate-and it is worthless if not-any vertical line as $m n$, drawn through the intersection, m, of a pair of oblique lines, will pass through the intersection of a series of such pairs.

$$
\text { エis. } 101
$$

The figure shows three of the possible designs whose construction is based on the dotted lines of the figure. For that at the top and right, in which horizontal rows of rhombi are left white, we draw vertical lines as $s q$ and $m n$ from the lower vertex of each intended white rhombus, continuing it over two rhombi, when another white one will be reached. The dark faces of the design are to be finally in solid llack, previous to which the lighter faces should be tinted with some drab or brown tint. The pencilled construction lines would necessarily be erased before the tint was laid on.

The most opaque effect in colors is obtained by mixing a large portion of Chinese white with the water color, making what is called by artists a "body color." Such a mixture gives a resnlt in marked contrast with the transparent effect of the usual wash; but the amount of white used should be sufficient to make the tint in reality a paste, and no more should be taken on the brush at one time than is needed to cover one figure.

Sepia and Chinese white, mixed in the proper proportions, give a tint which contrasts most agreeably with the black and white of the remainder of the figure. The star design and the hexagons in the lower right-hand corner result from extensions or modifications of the construction just described which will become evident on careful inspection.
231. Fig. 132 is a Minton design with which many are familiar, and which affords opportunity for considerable variety in finish. Its construction is almost self-evident. LThe equeal spaces, $a b, c d$, $m n$-which may be any width, x,-alternate with other equal spaces $b c$, which may preferably be about $3 x$ iu width. Lines at 45°, as indicated, complete the preliminaries to tinting.

```
F15% 132.
```


The octagons may be in Prussian blue, the hexagons in carmine, and the remainder in white and black, as shown; or browns and drabs may be employed for more subdued effects.

SHADING.
232. For shading, by graduated tints, provide a glass of clear water in-addition to the tint; also an ample supply of blotting paper.

The water-color of ink tint may be considerably darker than for flat tinting; in fact, the darker it is, provided it is clear, the more rapidly can the desired effeet be obtained.

The brush must contain much less liquid than for flat work.
Lay a narrow band of tint quickly along the part that is to be the darkest, then dip the brush into clear water and immediately apply it to the blotter, both to bring it to a good point and to remove the surplus tint. With the How onee-diluted tint carry the advancing edge of the band slightly farther. Repeat the operation until the tint is no longer discernible as such.

The process may be repeated from the same starting point as many times as necessary to produce the desired effect; but the work should be allowed to dry each time before laying on a new tint.

Any irregularities or streaks can easily be removed after the work dries, by retouching or "stippling" with the point of a fine brush that contains but little tint-scarcely more than enough to enable the brush to retain its point. For small work, as the shading of rivets, rods, etc., the process just mentioned, which is also called "dry shading," is especially adapted, and, although somewhat tedious, gives the handsomest effects possible to the draughtsman.
233. Where a good, general effect is wanted, to be obtained in less time than would be required for the preeeding processes, the method of over-lapping flat tints may be adopted. A narrower band of dark tint is first laid over the part to be the darkest. When dry this is overlaid by a broader band of lighter tint. A yet lighter wash follows, beginning on the dark portion and extending still farther than its predecessor. The process is repeated with further diluted tints until the desired effeet is obtained.

Faintly-pencilled lines may be drawn at the outset as limits for the edges of the tints.

This method is better adapted for large work, that is not to be closely scrutinized, than for drawings that deserve a high degree of finish.
234. As to the relative position and gradation of the lights and shades on a figure, the student is referred to Arts. 78 and 79 and the chapter on shadows; also to the figures of Plate II, which may serve as examples to be imitated while the learner is acquiring facility in the use of the brush, and before entering upon constructive work in shades and shadows. Fig. 3 of Plate II may be undertaken first, and the contrast made yet greater between the upper and lower boundaries. Fig. 1 (Plate II) requires no explanation. In Fig. 133 we have a wood-cut of a sphere, with the theoretical dark or "shade" line more sharply defined than in the spheres on the plate.

프․․ 134.

'A drawing of the end of a lighly-polished revolving shaft, or even of an ordinary metallic dise, would be shaded as in Fig. 134.

Fig. 2 (Plate II) represents the triangular-threaded serew, its oblique surfaces being, in mathematical language, warped helicoids, generated by a moving straight line, one end of which travels along the axis of a cylinder while the other end traces or follows a helix on the eylinder.

The construction of the helix having already been given (Art. 120) the outlines can readily be drawn. The method of exactly locating the shadow and shade lines will be found in the chapter on shadows.

Fig. 4 (Plate II), when compared with Fig. 91, illustrates the possibilities as to the representation of interesting mathematical relations. The fact may again be mentioned, on the principle of "line upon line," as also for the benefit of any who may not have read all that has preceded, that the spheres in the cone are tangent to the oblique plane at the foci of the elliptical section. The peculiar dotted effect in this figure is due to the fact that the original drawing, of which this is a photographic reproduction by the gelatine process, was made with a lithographic crayon upon a special pebbled paper much used by lithographers. The original of Fig. 1, on the other hand, was a brush-shaded sphere on Whatman's paper.
235. Fig. 5 (Plate II) shows a "Phœenix column," the strongest form of iron for a given weight,

Fig. 135.
 for sustaining compression. The student is familiar with it as an element of outdoor construction in bridges, elevated railroads, etc.; also in indoor work in many of the ligher office buildings of our great cities.

By drawing first an end view of a Phoenix column, similar to that of Fig. 135, we can readily derive an oblique view like that of the plate, by including it between parallels from all points of the former. The proportions of the columns are obtainable from the tables of the company.

Fig. 135 is a cross-section of the 8 -segment column, the shaded portion showing the minimum and the other lines the maximum size for the same inside diameter.

In a later chapter the proportions of other forms of structural iron will be found. Short lengths of any of these, if shown in oblique view, are good subjects for the brush, especially for "dry" shading, the effect to be aimed at being that of the rail section of Fig. 136.
236. When some particular material is to be indicated, a flat tint of the proper technical color (see Art. 73) should be laid on with the brush, either before or after shading. When the latter is done with sepia it is probably safer to lay on the flat tint first.

A darker tint of the technical color should always be given to a crosssection. For blue-printing, a cross-section may be indicated in solid black.

WOOD.-RIVER-BEDS.-MASONRY, ETC.
237. While the engineering draughtsman is ordinarily so pressed for time as not to be able to give his work the highest finish, yet he ought to be able, when occasion demands, to obtain both natural and artistic effects; and to conduce to that end the writer has taken pains to illustrate a number of ways of representing the materials of construction. Although nearly all of them may be-and in the cuts are-represented in black and white (with the exception of the wood-graining on Plate II), yet colors, in combined brush and line work, are preferable. The student will, however, need considerable practice with pen and ink before it will be worth while to work on a tinted figurc.
238. Ordinarily, in representing wood, the mere fact that it is wood is all that is intended to be indicated. This may be done most simply by a series of irregular, approximately-parallel lines, as in Fig. 10 or as on the rule in Fig. 17, page 12. Make no attempt, however, to have the grain very irregular. The natural unsteadiness of the hand, in drawing a long line toward one continuously, will cause almost all the irregularity desired.

If a better effect is wanted, yet without color, the lines may be as in Fig. 107, which represents hard wood.

In graining, the draughtsman should make his lines tovoard himself, standing, so to speak, at the end of the plank upon which he is working.

The splintered end of a plank should be sharply toothed, in contradistinction to a metal or stone fracture, which is what might be called smoothly irregular.
239. An examination of any piece of wood on which the grain is at all marked will show that it is darker at the inner vertex of any marking than at the outer point. Although this difference is more readily produced with the brush, yet it may be shown in a satisfactory degree with the pen, by a scrics of after-touches.
240. If we fill the pen with a rather dark tint of the conventional color, draw the grain as in the figures just referred to, and then overlay all with a medium flat wash of some properly chosen color, we get effects similar to those of Plate II.

On large timber-work the preliminary graining, as also the final wash, may be done altogether with the brush; as was the original of Fig. 9, Plate II.

End views of timbers and planks are conventionally represented by a series of concentric freehand rings in which the spacing increases with the distance from the heart; these are overlaid with a few radial strokes of darker tint. In ink alone the appearance is shown in Figs. 39 and 115.
241. The color-mixtures recommended by different writers on wood graining are something short of infinite in number; but with the addition of one or two colors to those listed in the draughtsman's outfit (Art. 56) one should be able to imitate nature's tints very closely.

No hard-and-fast rule as to the proportions of the colors can be given. In this connection we may quote Sir Joshua Reynolds' reply to the one who inquired how he mixed his paints. "With brains," said he. One general rule, however; always employ delicate rather than glaring tints.

Merely to indicate wood with a color and no graining use burnt sienna, the tint of Figs 7, 8 and 10 of Plate II.

Drawing from the writer's experience and from the suggestions of various experimenters in this line the following hints are presented:-

In cvery case grain first, then overlay with the ground tint, which should always be much lighter than the color used for the grain. If possible have at hand a good specimen of the wood to be imitated.

Hard Pine: Grain-burnt umber with either carmine or crimson lake; for overlay add a little gamboge to the grain-tint diluted.

Soft Pine: Gamboge or yellow ochre with a small amount of burnt sienna.
Black Walnut: Grain-burnt umber and a very little dragon's blood; final overlay of modified tint of the same or with the addition of Payne's gray.

Oak: Grain-burnt sienna; for overlay, the same, with yellow ochre.

Chestnut: Grain-burnt umber and dragon's blood; overlay of the same, diluted, and with a large proportion of gamboge or light yellow added.

Spruce: Grain—burnt umber, medium; add yellow ochre for the overlay.

Mahogany: Grain-burnt sienna or umber with a small amount of dragon's blood; dilute, and add light yellow for the overlay.

Rosewood: Grain-replace the dragon's blood of mahoganygrain by carmine, and for overlay dilute and add a little Prussian blue.

RUBBLE MASONRY Light India Ink.

BRICK

VULCANITE India ink.

CONCRETE canite, given on page 25 as pen and ink exercises, are again presented in Fig. 137, for reproduction in combined brush and line
 work. The appropriate color is indicated under each section.
244. Masonry constructions may be broadly divided into rubble and ashlar.

In ashlar masonry the bed-surfaces and the joints (edges) are shaped and dressed with great eare, so that the stones may not only be phaced in regular layers or courses, but often fill exactly some predetermined place, as in arch construction, in which ease the determination of their forms and the derivation of the patterns for the stone-cutter involves the application of the Descriptive Geometry of Monge. (Art. 283).

Rubble work，however，consists of constructions involving stones mainly＂in the rough，＂but may be either coursed or uncoursed．Fig． 138 is a neat example of uncoursed though partially dressed or＂hammered＂rubble．In section，as shown in Fig．137，it is merely necessary to rule section－ lines over the boundaries of the stones－a remark applying equally to ashlar masonry．

픋․ 139．

The other examples in this chapter are of ashlar，mainly＂quarry－faced，＂ that is，with the front nearly as rough as when quarried．A beveled or ＂chamfered＂ashlar is shown in Figs． 129 and 140 ，the latter shaded in what is probably the most effective way for small work，viz．，with dots，the effect depending upon the number，not the
 size of the latter．

Only a careful examination of the
kind and position of the lines in the other figures on this page will diselose the secret of the variety in the effects produced．For the handsomest results with any of these figures the pen－work－

F1E． 1 \＆1．

Fiヒ․ 142．

whether dotting or＂cross－hatching＂－should be preceded by an undertone of either India ink， umber，Payne＇s gray，cobalt or Prussian blue，according to the kind of stone to be represented．
Fig. 143.

エ゙ー・ 1まも．

For slate use a pale blue；for brown free－stone either an umber or sepia；while for stone in general，kind immaterial，use India ink．

$\boldsymbol{C H A P T E R V I I}$ VI

FREE-HAND AND MECHANICAL LETTERING.-PROPORTIONING OF TITLES.

245. Practice in lettering forms an essential part of the elementary work of a draughtsman. Every drawing has to have its title, and the general effect of the result as a whole depends largely upon the quality of the lettering.

Other things being equal, the expert and rapid draughtsman in this line has a great advantage over one who can do it but slowly. For this reason free-hand lettering is at a high premium, and the beginner should, therefore, aim not only to have his letters correctly formed and properly spaccd, but, as far as possible, to do without mechanical aids in their construction. When under great pressure as to time it is, however, perfectly legitimate to employ some of the mechanical expedients used in large establishments as "short cuts" and labor-savers. Among these the principal are "tracing" and the use of rubber types.
246. To trace a title one must have at hand complete printed alphabets of the size of type required. Placing a piece of tracing-paper over the letter wanted, it is traced with a hard pencil, the paper then slipped along to the next letter needed, and the process repeated until the words desired have been outlined. The title is then transferred to the drawing by first running over the lines on the back of the tracing-paper with a soft pencil, after which it is only necessary to re-trace the letters with a hard pencil, on the face of the transfer-paper, to find their outlines faintly yet sufficiently indicated on the paper underneath. Carbon paper may also be used for transferring.
247. The process just described would be of little service to a ready free-hand draughtsman, but with the use of mbber types, for the words most frequently recurring in the titles, a merely average worker may easily get results which-in point of time-cannot be exceeded by any other methorl. When employing such types either of the following ways may be adopted: (a) a light impression may be made with the aniline ink ordinarily used on the pads, and the outlines then followed and the "filling in" done either with a writing-pen* or fine-pointed sable-hair brush; or (b) the impression may be made after moistening the types on a pad that has been thoroughly wet with a light tint of India ink. The drawing-ink must then be immediately applied, free-hand, with a Falcon pen or sable brush, before the type-impression can dry. The pen need only be passed down the middle of a line, as on the dampened surface the ink will spread instantly to the outlines.
248. The educated draughtsman should, however, be able not only to draw a legible title of the simple character required for shop-work, and in which the foregoing expedients would be mainly serviceable, but be prepared also for work out of the ordinary line, and, if need be, quite elaborate, as on a competitive drawing. Such knowledge can only be gained by careful observation of the forms of letters, and considerable practice in their construction.

No rigid rules can be laid down as to choice of alphabets for the various possible cases. Common-sense, custom and a natural regard for the "fitness of things" are the determining factors. Obviously rustic letters would be out of place on a geometrical drawing, and other incongruities

[^22]will naturally suggest themselves. In addition to the hints in Art. 27 a few general principles and methods may, however, be stated to the advantage of the beginner, who should also refer to the special instructions given in connection with certain specimen alphabets at the end of this work.
249. In the first place, a title should be symmetrical with respect to a vertical centre-line, a rule which should be violated but rarely, and then, usually, when the title is to be somewhat fancy in design, as for a magazine cover.

Elementari Plates

 Δ in Δ
$\mathbb{M} \mathbb{E} \mathbb{C} \mathbb{H} \mathbb{A} \mathbb{N} \mathbb{I} \mathbb{C} \mathbb{A} \mathbb{L} \mathbb{D} \mathbb{R} \mathbb{A} \mathbb{W} \mathbb{N} \mathbb{N}$

 drawn by $\mathfrak{C r o f f l a m u t ~ D a n ~ C o r l e a x ~ a t ~ t h e ~}$LEADING TECHNICAL SCHロ口L Jan.-June, 3001.

250. If it be a complete as distinguished from a partial or sub-title it will answer the following questions which would naturally arise in the mind of the examiner:-

What is it? - Where done? - By whom? - When? - On what scale?
In answering these questions the relative valuation and importance of the lines are expressed by the sizes and kinds of type chosen. This is a point requiring most careful consideration, as the final effect depends largely upon a proper balancing of values.

PERFECTION SUSPENSION BRIDGE

 Gaquwin, Mackenzie mar Cartwridht $\longrightarrow+$ MINNEAPOLIS, MINN. \qquad Scale $4 \mathrm{Ft}=1 \mathrm{im}$. June 16, 29OO. Jose maftinez, Det.
251. The "By whom?" may cover two possibilities. In the case of a set of drawings made in a scientific school it would refer to the draughtsman, and his name might properly have considerably greater prominence than in any other case. The upper title on this page is illustrative of this point, as also of a symmetrical and balanced arrangement, although cramped as to space, vertically.

Ordinarily the "By whom?" will refer to the designer, and the draughtsman's name ought to be comparatively inconspicuous, while the name of the designer should be given a fair degree of prominence. This, and other important points to be mentioned, are illustrated in the preceding
arrangement, printed, like the upper title, from types of which complete alphabets will be found at the end of this work.
252. The abbreviation Del., often placed after the draughtsman's name, is for Delineavit - He drew it-and does not indicate what the risitor at the exhibition supposed, that all good draughtsmen hail from Delaware.
253. The best designed titles are either in the form of two truneated pyramids having, if possible, the most important line as their common base, or else elliptical in shape.
254. The use of capitals throughout a line depends upon the style of type. It gives a most unsatisfactory result if the letters are of irregular outline, as is amply evidenced by the words

each letter of which is exquisite in form, but the combination almost illegible. Contrast them with the same style, but in capitals and small letters:-

H7lexlyantial Draminty.

255. As to spacing, the visible white spaces between the letters should be as nearly the same as possible. In this feature, as in others, the draughtsman can get much more pleasing results than the printer, since the latter usually has each letter on a separate piece of metal, and can not adjust his space to any particular combination of letters, such as FA, LV, W A or A V, where a better effect would be obtained by placing the lower part of one letter under the upper part of the next. This is illustrated in Fig. 146, which may be contrasted with the printer's best spacing of the separate types for the A and W in the word "Drawings" of the last title.

256. The amount of space between letters will depend upon the length of line that the word or words must make. If an important word has few letters they should be "spaced out," and the letters themselves of the "extended" kind, i. e., broader than their height. The following word will illustrate. The characteristic feature of this type, riz., heary horizontals and light verticals, is common to all the variations of a fundamental form frequently called Italian Print.

When, on the other hand, many letters must be crowded into a small space, a "condensed" style of letter must be adopted, of which the following is an example:

Pennsylvania Railroad.

257. While the varieties of letters are very numerous yet they are all but changes rung on a few fundamental or basal forms, the most elementary of which is the

GOTHIC, ALSO CALLED HALF-BLOCK.

Letters like B, O, ete., which have, usually, either few straight parts or none at all, may, for the sake of variety as also for convenience of construction, be made partially or wholly angular; in the latter case the form is called Geometric Gothic by some type manufacturers. It is only appropriate for work exelusively mechanical. The rounded forms are preferable for free-hand lettering.

The following eomplete Gothie alphabet is so construeted that whether designed in its "eondensed" or "extended" form the proper proportions may be easily preserved.

Taking all the solid parts of the letters at the same width as the I, we will find any letter of arerage width, as U , to be twice that unit, plus the opening between the uprights, whieh last, being indeterminate, we may call x, making it small for a "condensed" letter, and broad as need be for an "extended" form.

The word march would foot up $5 \mathrm{U}+3$, disregarding-as we would invariably - the amount the foot of the R projeets beyond the main right-hand outline of the letter. In terms of x this makes $5 x+13$, as $\mathrm{U}=x+2$. Allowing spaces of $1 \frac{1}{4}$ unit width between letters adds 5 to the above, making $5 x+18$ for the total length in terms of the I. Assuming x equal to twice the unit we would have the whole word equal to twenty-eight units; and if it were to extend seven inches the width of the solid parts would therefore be one-quarter of an ineh.

Where the width of a letter is not indicated it is assumed to be that of the U . The W is equal to $2 \mathrm{U}-1$. This relation, however, does not hold good in all alphabets.

The angular eorners are drawn usually with the 45° triangle.
The guide-lines show what points of the various letters are to be found on the same level, and should be but faintly peneillerl.

As remarked in Art. 27, the extended form of Gothie is one of the best for dimensioning and lettering working drawings, and is rapidly eoming into use by the profession.
258. The Full-Block letter next illustrated is easier to work with than the Gothie in the matter of preliminary estimate, as the width of eaeh letter-in terms of unit squares-is evident at a glance.

The same word march would foot up twenty-seven squares without allowing for spaces between letters. Calling the latter each two we would have thirty-five squares for the same length as before (seven inehes), making one-fifth of an inch for the width of the solid parts. For convenienee the widths of the various letters are summarized:
$\mathrm{I}=3 ; \quad \mathrm{C}, \mathrm{G}, \mathrm{O}, \mathrm{Q}, \mathrm{S}, \mathrm{Z}=4 ; \quad \mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{J}, \mathrm{L}, \mathrm{P}, \mathrm{R}, \mathrm{T}, \&=5 ; \mathrm{H}, \mathrm{K}, \mathrm{N}, \mathrm{U}, \mathrm{V}, \mathrm{X}, \mathrm{Y}=6 ; \mathrm{M}=7 ; \mathrm{W}=8$.
259. In case the preliminary figuring were only approximate and there were but two words in the line, as, for example, Mechanical Drawing, a safe method of working would be to make a fair allowance for the space between the words, begin the first word at the ealeulated distance to the left of the vertical centre-line, complete it, then work the seeond word baekward, beginning with the

G as far to the right of the reference line as the M was to the left. On completing the second word any difference between the actual and the estimated length of the words, due to over- or under-width of such letters as M, W and I, will be merged into the space between the words.

포․ 1 保

With three words in a line the same method might be adopted, the middle word being easily placed half way between the others, which, ly this method of construction would not only begin correctly but also terminate where they should.
260. Note particularly that the top of a B is always slightly smaller than the bottom; Fis.149. similarly with the S . This is made necessary by the fact that the cye scems to exaggerate the upper half of a letter. To get an idea of the amount of difference allowable compare the following equal letters printed from Roman type, condensel. Although not so important in the E , some difference between top and bottom may still to advantage be made. Another refinement is the location of the horizontal cross-bar of an A slightly below the middle of the letter.
261. While rertical letters are most frequently used, yet no handsomer effect can be obtained than by a well-executed inclined letter. The angle of inclination should be about 70°.

Beginners usually fail sadly in their first attempt with the A and V , one of whose sides they give the same slant as the upright of the other letters. In point of fact, however, it is the imaginary (though, in the construction, pencilled) centre-line which should have that inclination. See Fig. 150.

Fis. 150 .

In these forms-the Roman and Italic Roman-the union of the light horizontals or "seriffs" with the other parts is in general effected by means of fine arcs, called "fillets," drawn frec-hand. On many letters of this alphabet some lines will, howerer, meet at an angle, and only a careful examination of good models will enable one to construct correct forms. Upon the size of the fillets the appearance of the letter mainly depends, as will be seen by a glance at Fig. 151, which repro-
Fiss. 151.
 duces, exactly, the N of each of two leading alphabet books. If the fillets round out to the end of the spur of the letter, a coarse and bulky appearance is evidently the result; while a finc curve, leaving the straight horizontals projecting beyond them, gives the finish desired. This is further illustrated by No. 23 of the alphabets appended, a type which for clearness and elegance is a triumph of the founder's art. As nsually constructed, however, the D and R are finished at the top like the P.

262. The Roman alphabet and its inclined or italic form are much used in topographical work.

A text-book devoted entirely to the Roman alphabet is in the market, and in some works on topographical drawing very elaborate tables of proportions for the letters are presented; these answer admirably for the construction of a standard alphabet, but in practice the proportions of the model would be preserved by the draughtsman no more closely than his aye could secure. Usually the small letters should be about three-fifths the height of the capitals. Except when more than onethird of an inch in height these letters should be entirely free-hand.
263. When a line of a title is curved no change is made in the forms of the letters; but if of a vertical, as distinguished from a slanting or italic type, the centre-line of each letter should, if produced, pass through the centre of the curve.

Italic letters, when arranged on a curve, should have their centre-lines inclined at the same angle to the normal (or radius) of the curve as they ordinarily make with the vertical.
264. An alphabet which gives a most satisfactory appearance, yet can be constructed with great rapidity, is what we may call the "Railroad" type, since the public has become familiar with it mainly from its frequent use in railroad advertisements.

The fundamental forms of the small letters, with the essential construction lines, are given in rectangular outline in the complete alphabet on the preceding page, with various modifications thereof in the words below them, showing a large number of possible effects.

At least one plain and fancy capital of each letter is also to be found on the same page, with in some instances a still larger range of choice.

No handsomer effects are obtainable than with this alphabet, when brush tints are employed for the undertone and shadows.
265. For rapid lettering on tracing-cloth, Bristol board or any smooth-surfaced paper a style long used abroad and increasing in favor in this country is that known as Round Writing, illustrated by Fig. 152, and

Oiomũ Matting

 for which a special text-book and pens have been prepared by F. Soenneeken. The pens are

Mechanical Drawing stubs of various widths, cut off obliquely, and when in use should not, as ordinarily, be dipped into the ink, but the latter should be inserted, by means of another pen, between the top of the Soennecken pen and the brass "feeder" that is usually slipped over it to regulate the flow.

The Soennecken Round Writing Pens are also by far the best for lettering in Old English, German Text and kindred types.
The improvement due to the addition of a few straight lines to an ordinary title will become evident by comparing Figs. 153 and 154. The judicious use of "word ornaments," such as those of alphabets $33,42,49$, and of several of the other forms illustrated, will greatly enhance the appearance of a title with-
 out materially increasing the time expended on it. This is illustrated in the lower title on page 89.

266. Borders. Another effective adjunct to a map or other drawing is a neat border. It should be strictly in keeping with the drawing, both as to character and simplicity.

On page 95 a large number of corner designs and borders is presented, one-third of them original designs, by the writer, for this work. The principle of their construction is illustrated by Fig. 155, in which the larger design shows the necessary prcliminary lines, and the smaller the complete corner. It is evident in this, as in all cases of interlaced designs, that we must first lay off each way from the corner as many equal distances as there are bands and spaces, and lightly make a network of squares-or of rhombi, if the angles are acute-by pencilled construction-lines through the points of division.
267. Shade lines on borders. The usual rule as to shade lines applies equally to these designs, thus: Following any band or pair of lines making the turns as one piece, if it runs horizontally the lower line is the heavier, while in a vertical pair the right-hand line is the shaded linc. This is on the assumption that the light is coming in the direction usually assumed for mechanical drawings, i. e., descending diagonally from left to right.

In case a pair of lines runs obliquely, the shaded lines may be determined by a study of their location on the designs of the plate of borders.

It need hardly be said that on any drawing and its title the light
 should be supposed to come from but one "direction throughout, and not be shifted; and the shaded lines should be located accordingly. This rule is always imperative.

In drawing for scientific illustration or in art work it is allowable to depart from the usual strictly conventional direction of light, if a better effect can thereby be secured.
268. A striking letter can be made by drawing the shade line only, as in Fig. 146, page 90, which we may call "Full-Block Shade-Line," being based upon the alphabet of Fig. 148, page 92, as to construction. Owing to its having more projecting parts it gives a much handsomer effect than the
HALE-ELOCK SHADE-LINE.

The student will notice that the light comes from different directions in the two examples.
These forms are to the ordinary fully-outlined letters what art work of the "impressionist" school is to the extremely detailed and painstaking work of many; what is actually seen suggests an equal amount not on the paper or canvas.
269. While a teacher of draughting may well have on hand, as reference works for his class, such books on lettering as Prang's, Becker's and others equally elaborate, yet they will be found of only occasional service, their designs being as a rule more highly ornate than any but the specialist would dare undertake, and mainly of a character unsuitable for the usual work of the engineering or architectural draughtsman, whose needs were especially in mind when selecting types for this work.

The alphabets appended afford a large range of choice among the handsomest forms recently designed by the leading type manufacturers, also containing the best among former types; and with the "Railroad," Full-Block and Half-Block alphabets of this chapter, proportioned and drawn by the writer, supply the student with a practical "stock in trade" that it is believed will require but little, if any, supplementing.

$\boldsymbol{C H} \boldsymbol{A} \boldsymbol{P} \boldsymbol{E} \boldsymbol{R} \quad V I I I$

BLUE-PRINT AND OTHER COPYING PROCESSES.-METHODS OF ILLUSTRATION.

270. While in a draughting office the process described below is, at present, the only method of copying drawings with which it is absolutely essential that the draughtsman should be thoroughly acquainted, he may, nevertheless, find it to his advantage to know how to prepare drawings for reproduction by some of the other methods in most general use. He ought also to be able to recognize, usually, by a glance at an illustration, the method by which it was obtained. Some brief hints on these points are therefore introduced.

Obviously, however, this is not the place to give full particulars as to all these processes, even were the methods of manipulation not, in some cases, still "trade secrets"; but the important details concerning them, that have become common property, may be obtained from the following valuable works: Modern Heliographic Processes,* by Ernst Lietze; Photo-Engraving, Etching and Lithography, ${ }^{\dagger}$ by W. T. Wilkinson; Modern Reproductive Graphic Processes," by Jas. S. Pettit, and Photo-Engraving, by Carl Schraubstadter, Jr.

THE BLUE-PRINT PROCESS.

271. By means of this process, invented by Sir John Herschel, any number of copies of a drawing can be made, in white lines on a blue ground. In Arts. 43 and 45 some hints will be found as to the relative merits of tracing-cloth and "Bond" paper, for the original drawing.

A sheet of paper may be sensitized to the action of light by coating its surface with a solution of red prussiate of potash (ferricyanide of potassium) and a ferric salt. The chemical action of light upon this is the production of a ferrous salt from the ferric compound; this combines with the ferricyanide to produce the final blue undertone of the sheet; while the portions of the paper from which the light was intercepted by the inked lines, become white after immersion in water.

The proportions in which the chemicals are to be mixed are, apparently, a matter of indifference, so great is the disparity between the recipes of different writers; indeed, one successful draughtsman says: "Almost any proportion of chemicals will make blue-prints." Whichever recipe is adopted-and a considerable range of choice will be found in this chapter-the hints immediately following are of general application.
272. Any white paper will do for sensitizing that has a hard finish, like that of ledger paper, so as not to absorb the chemical solution.

To sensitize the paper dissolve the ferric salt and the ferricyanide in water, separately, as they are then not sensitive to the action of light. The solutions should be mixed and applied to the paper only in a dark room.

Although there is the highest authority for "floating the paper to be sensitized for two minutes on the surface of the liquid," yet the best American practice is to apply the solution with a soft flat brush about four inches wide. The main objcet is to obtain an even coat, which may usually

[^23]be secured by a primary coat of horizontal strokes followed by an overlay of vertical strokes; the second coat applied before the first dries. If necessary, another coat of diagonal strokes may be given to secure evenness. The thicker the coating given the longer the time required in printing. A bowl or flat dish or plate will be found convenient for holding the small portion of the solution required for use at any one time. The chemicals should not get on the back of the sheet.

Each sheet, as coated, should be set in a dark place to dry, either "tacked to a board by two adjacent corners," or "hung on a rack or over a rod," or "placed in a drawer-one sheet in a drawer,"-varying instructions, illustrating the quite general truth that there are usually several almost equally good ways of doing a thing.
273. To copy a drawing, place the prepared paper, sensitized side up, on a drawing-board or printing-frame on which there has been fastened, smoothly, either a felt pad or canton flannel eloth. The drawing is then immediately placed over the first sheet, inked side up, and contact secured between the two by a large sheet of plate glass, placed over all.

Exposure in the direct rays of the sun for four or five minutes is usually sufficient. The progress of the chemical action can be observed by allowing a corner of the paper to project beyond the glass. It has a grayish hue when sufficiently exposed.

If the sun's rays are not direct, or if the day is cloudy, a proportionately longer time is required, running up in the latter case, from minutes into hours. Only experiment will show whether one's solution is "quick" or "slow;" or the time required by the degree of cloudiness.

A solution will print more quickly if the amount of water in it be increased, or if more iron is used; but in the former case the print will not be as dark, while in the latter the results, as to whiteness of lines, are not so apt to be satisfactory.

Although fair results can be obtained with paper a month or more after it has been sensitized, yet they are far more satisfactory if the paper is prepared each time (and dried) just before using.

On taking the print out of the frame it should be immediately immersed and thoroughly washed in cold water for from three to ten minutes, after which it may be dried in either of the ways previously suggested.

If many prints are being made, the water should be frequently changed so as not to become charged with the solution.
274. The entire process, while exceedingly simple in theory, varies, as to its results, with the experience and judgment of the manipulator. To his choice the decision is left between the following standard recipes for preparing the sensitizing solution. The "parts" given are all by weight. In every case the potash should be pulverized, to facilitate its dissolving.

No. 1. (From Le Génie Civil.)

Solution No. 2. $\left\{\begin{array}{l}\text { Citrate of Iron and Ammonia.................................... } 10 \text { parts. } \\ \text { Water.. } 70 \text { parts. }\end{array}\right.$
Filter the solutions separately, mix equal quantities and then filter again.
No. 2. (From U. S. Laboratory at Willett's Point).
Solution No. 1. $\left\{\begin{array}{l}\text { Double Citrate of Iron and Ammonia..................... } 18.1 \text { ounce. } \\ \text { Water.. } 4 \text { ounces. }\end{array}\right.$

No. 3. (Lietze's Method).

$$
\text { Stock Solution. }\left\{\begin{array}{r}
5 \\
32 \\
\text { ounces, avoirdupois, Red Prussiate of Potash. } \\
\text { fl...............................Water. }
\end{array}\right.
$$

"After the red prussiate of potash has been dissolved-which requires from one to two daysthe liquid is filtered. This solution remains in good condition for a long time. Whenever it is required to sensitize paper, dissolve, for every two hundred and forty square feet of paper,

$$
\left\{\begin{array}{l}
1 \text { ounce, avoirdupois, Citrate of Iron and Ammonia, } \\
4 \frac{1}{4} \text { fluid ounces..Water, }
\end{array}\right.
$$

and mix this with an equal volume of the stock solution.
The reason for making a stock solution of the red prussiate of potash is, that it takes a considerable time to dissolve and because it must be filtered. There are many impurities in this chemical which can be removed by filtering. Without filtering, the solution will not look clear. The reason for making no stock solution of the ferric citrate of ammonia is that such solution soon becomes moldy and unfit for use. This ferric salt is brought into the market in a very pure state, and does not need to be filtered after being dissolved. It dissolves very rapidly. In the solid form it may be preserved for an unlimited time, if kept in a well-stoppered bottle and protected against the moisture of the atmosphere. A solution of this salt, or a mixture of it with the solution of red prussiate of potash, will remain in a serviceable condition for a number of days, but it will spoil, sooner or later, according to atmospheric conditions. . . Four ounces of sensitizing solution, for blue prints, are amply sufficient for coating one hundred square feet of paper, and cost about six cents."

For copying tracings in blue lines or black on a white ground, one may either employ the recipes given in Lietze's and Pettit's work, or obtain paper already sensitized, from the leading dealers in draughtsmen's supplies. The latter course has become quite as economical, also, for the ordinary blueprint, as the preparing of one's own supply.

For copying a drawing in any desired color the following method, known as Tilhet's, is said to give good results: "The paper on which the copy is to appear is first dipped in a bath consisting of 30 parts of white soap, 30 parts of alum, 40 parts of English glue, 10 parts of albumen, 2 parts of glacial acetic acid, 10 parts of alcohol of 60°, and 500 parts of water. It is afterward put into a second bath, which contains 50 parts of burnt umber ground in alcohol, 20 parts of lampblack, 10 parts of English glue, and 10 parts of bichromate of potash in 500 parts of water. They are now sensitive to light, and nust, therefore, be preserved in the dark. In preparing paper to make the positive print another bath is made just like the first one, except that lampblack is substituted for the burnt umber. To obtain colored positives the black is replaced by some red, blue or other pigment.

In making the copy the drawing to be copied is put in a photographic printing frame, and the negative paper laid on it, and then exposed in the usual manner. In clear weather an illumination of two minutes will suffice. After the exposure the negative is put in water to develop it, and the drawing will appear in white on a dark ground; in other words, it is a ncgative or reversed picture. The paper is then dried and a positive made from it by placing it on the glass of a printingframe, and laying the positive paper upon it and exposing as before. After placing the frame in the sun for two minutes the positive is taken out and put in water. The black dissolves off without the necessity of moving back and forth."

PHOTO-AND OTHER PROCESSES.

275. If a drawing is to be reproduced on a different scale from that of the original, some one of the processes which almits of the use of the camera is usually employed. Those of most importance to the draughtsman are (1) wood engraving; (2) the "wax process" or cerography; (3) lithography, and (4) the various methods in which the photographic negative is made on a film of gelatine which is then used directly-to print from, or indirectly-in obtaining a metal plate from which the impressions are taken.

In the first three named above the use of the camera is not invariably an element of the process.

All under the fourth head are essentially photo-processes and their already large number is constantly increasing. Among them may be mentioned photogravure, collotype, phototype, autotype, photoglyph, albertype, heliotype, and heliogravure.

WOOOD ENGRAVING.

276. There is probably no process that surpasses the best work of skilled engravers on wood. This statement will be sustained by a glance at Figs. 14, 15, 20-24, 134, 136, and those illustrating mathematical surfaces, in the next chapter. Its expensiveness, and the time required to make an illustration by this method, are its only disadvantages.

Although the camera is often employed to transfer the drawing to the boxwood block in which the lines are to be cut, yet the original drawing is quite as frequently made in reverse, directly on the block, by a professional draughtsman who is supposed to have at his disposal either the object to be drawn or a photograph or drawing thereof. The outlines are pencilled on the block, and the shades and shadows given in brush tints of India ink, re-enforced, in some cases, by the pencil, for the deepest shadows.

The "high lights" are brought out by Chinese white. A medium wash of the latter is also usually spread upon the block as a general preliminary to outlining and shading.

The task of the engraver is to reproduce faithfully the most delicate as well as the strongest effects obtained on the block with pencil and brush, cutting away all that is not to appear in black in the print. The finished block nay then be used to print from directly, or an electrotype block can be obtained from it which will stand a large number of impressions much better than the wood.

CEROGRAPHY.

277. For map-making, illustrations of machinery, geometrical diagrams and all work mainly in straight lines or simple curves, and not involving too delicate gradations, the cerographic or "wax process" is much employed. For clearness it is searcely surpassed by steel engraving. Figures 36, 90 and 107 are good specimens of the effects obtainable by this method. The successive steps in the process are (a) the laying of a thin, even coat of wax over a copper plate; (b) the transfer of the drawing to the surface of the wax, either by tracing or-more generally - by photography; (c) the re-drawing or rather the cutting of these lines in the wax, the stylus removing the latter to the surface of the copper; (d) the taking of an electrotype from the plate and wax, the deposit of copper filling in the lines from which the wax was removed.

Although in the preparation of the original drawing the lines may preferably be inked, yet it is not absolutely necessary, provided a pencil of medium grade be employed.

Any letters desired on the final plate may be also pencilled in their proper places, as the engraver makes them on the wax with type.

A surface on which section-lining or cross-hatching is desired may have that fact indicated upon it in writing, the direction and number of lines to the inch being given. Such work is then done with a ruling machine.

Errors may readily be corrected, as the surface of the wax may be made smooth, for recutting, by passing a hot iron over it.

LITHOGRAPHY. - PHOTO-LITHOGRAPHY. - CHROMO-LITHOGRAPHY.
278. For lithographic processes a fine-grained, imported limestone is used. The drawing is made with a greasy ink-known as "lithographic"-upon a specially prepared paper, from which it is transferred under pressure, to the surface of the stone. The un-inked parts of the stone are kept thoroughly moistened with water, which prevents the printer's ink (owing to the grease which the latter contains) from adhering to any portion except that from which the impressions are desired.

Photo-lithography is simply lithography, with the camera as an adjunet. The positive might be made directly upon the surface of the stone by coating the latter with a sensitizing solution; but, in general, for convenience, a sensitized gelatine film is exposed under the negative, and by subsequent treatment gives an image in relief which, after inking, can be transferred to the surface of the stone as in the ordinary process.

Chromo-lithography, or lithography in colors, has been a very expensive process, owing to its requiring a separate stone for each color. Recent inventions render it probable that it will be much simplified, and the expense correspondingly reduced. The details of manipulation are closely analogous to those of ink prints.

When colored plates are wanted, in which delicate gradations shall be indicated, chromo-lithography may preferably be adopted; although "half-tones," with colored inks, give a scarcely less pleasing effect, as illustrated by Figs. $7-10$, Plate II. But for simple line-work, in two or more colors, one may preferably employ either cerograply or photo-engraving, each of which has not only an advantage, as to expense, over any lithographic process, but also this in addition-that the blocks can be used by any printer; whereas lithographing establishments necessarily not only prepare the stone but also do the printing.

PHOTO-ENGRAVING.-PHOTO-ZINCOG1RAPHY.

279. In this popular and rapid process a sensitized solution is spread upon a smooth sheet of zinc, and over this the photographic ncgative is placed. Where not acted on by the light the coating remains soluble and is washed away, exposing the metal, which is then further acted on by acids to give more relief to the remaining portions.

Except as described in Art. 281 this process is only adapted to inked work in lines or dots, which is reproduced faithfully, to the smallest detail. Among the best photo-engravings in this book are Figs. 10 and 11, 50, 79 and 80.
280. The following instructions for the preparation of drawings, for reproduction by this process, are those of the American Society of Mechanical Engineers as to the illustration of papers by its members, and are, in gencral, such as all the engraving companics furnish on application.
"All lines, letters and figurcs must be perfectly black on a white ground. Blue prints are not available, and red figures and lines will not appear. The smoother the paper, and the blacker the ink, the better are the results. 'Tracing-cloth or paper answers very well, but rough paper-even

Whatman's-gives bad lines. India ink, ground or in solution, should be used; and the best lines are made on Bristol board, or its equivalent with an enameled surface. Brush work, in tint or grading, unfits a drawing for immediate use, since only line work can be photographed. Hatching for sections need not be completed in the originals, as it can be done easily by machine on the block. If draughtsmen will indieate their sections unmistakahly, they will be properly lined, and tints and shadows will be similarly treated.

The best results may be expected by using an original twice the height and width of the proposed block. The reduction can be greater, provided care has been taken to have the lines far enough apart, so as not to mass them together. Lines in the plate may run from 70 to 100 to the inch, and there should be but half as many in a drawing which is to be reduced one-half; other reductions will be in like proportion.

Draughtsmen may use photographic prints from the objects if they will go over with a carbon ink all the lines which they wish reproduced. The photographic color can be bleached away by flowing a solution of bi-chloride of mercury in alcohol over the print, leaving the pen lines only. Use half an ounce of the salt to a pint of alcohol.

Finally, lettering and figures are most satisfactorily printed from type. Draughtsmen's best efforts are usually thus excelled. Such letters and figures had therefore best be left in pencil on the drawings, so they will not photograph but may serve to show what type should be inserted."

To the above hints should be added a caution as to the use of the rubber. It is likely to diminish the intensity of lines already made and to affect their sharpness; also to make it more difficult to draw clear-cut lines wherever it has been used.

It may be remarked with regard to the foregoing instructions that they aim at securing that uniformity, as to general appearance, which is usually quite an object in illustration. But where the preservation of the individuality and general characteristies of one's work is of any importance whatever, the draughtsman is advised to letter his own drawings and in fact finish them entirely, himself, with, perhaps, the single exception of section-lining, which may be quickly done by means of Day's Rapid Shading Mediums or by other teehnical processes.
281. Half Tones. Photo-zineography may be employed for reproducing delieate gradations of light and shade, by breaking up the latter when making the photographic negative. The result is called a half tone, and it is one of the favorite processes for ligh-grade illustration. Figs. 95 and 130 illustrate the effects it gives. On close inspection a series of fine dots in regular order will be noticed, or else a net-work, so that no tone exists unbroken, but all have more or less white in them.

The methods of breaking up a tone are very numerous. The first patent dates back to 1852. The principle is practically the same in all, viz., between the object to be photographed and the plate on which the negative is to be made there is interposed a "sereen" or sheet of thin glass, on which the desired mesh has been previously photographed.

In the making of the "screen" lies the main difference between the variously-named methods. In Meissenbach's method, by which Figs. 95 and 130 were made, a photograph is first taken, on the "sereen," of a pane of clear glass in which a system of parallel lines-one hundred and fifty to the inch - has been cut with a diamond. The ruled glass is then turned at right angles to its first position and its lines photographed on the sereen over the first set, the times of exposure differing slightly in the two cases, being generally about as 2 to 3.

This process is well adapted to the reproduction of "wash" or brush-tinted drawings, photographs, etc. The object to be represented, if small, may preferably be furnished to the engraving company and they will photograph it direct.

GELATINE FILM I HOTO-PROCESSES.
282. As stated in Art. 275 , in which a few of the above processes are named, a gelatine film may be employed, either as an adjunct in a method resulting in a metal block, or to print from directly; in the latter case the prints must be made, on special paper, hy the company preparing the film. In the composition and manipulation of the film lies the main difference between otherwise elosely analogous processes. For any of them the company should be supplied with either the original object or a good drawing or photographic negative thereof.

Not to unduly prolong this chapter-which any sharp distinction between the various methods would involve, yet to give an idea of the general principles of a gelatine process we may conclude with the details of the preparation of a helintype plate, given in the language of the circular of a leading illustrating company. Figs. 1-5 of Plate II illustrate the effect obtained by it.
"Ordinary cooking gelatine forms the basis of the positive plate, the other ingredients being bichromate of potash and chrome alum. It is a pecularity of gelatine, in its normal condition, that it will absorb cold water, and swell or expand under its influence, but that it will dissolve in hot water. In the preparation of the plate, therefore, the three ingredients just named, being combined in suitable proportions, are dissolved in hot water, and the solution is poured upon a level plate of glass or metal, and left there to dry. When dry it is about as thick as an ordinary sheet of parchment, and is stripped from the drying-plate, and placed in contact with the previously-prepared negative, and the two together are exposed to the light. The presence of the bichromate of potash renders the gelatine sheet sensitive to the action of light; and wherever light reaches it, the plate, which was at first gelatinous or alsorbent of water, becomes leathery or waterproof. In other words, wherever light reaches the plate, it produces in it a change similar to that which tanning produces upon hides in converting them into leather. Now it must be understood that the negative is made up of transparent parts and opaque parts; the transparent parts admitting the passage of light through them, and the opaque parts exeluding it. When the gelatine plate and the negative are placed in contact, they are exposed to light with the negative uppermost, so that the light acts through the translucent portions, and waterproofs the gelatine underneath them; while the opaque portions of the negative shield the gelatine underneath them from the light, and consequently those parts of the plate remain unaltered in character. The result is a thin, flexible sheet of gelatine of which a portion is waterproofed, and the other portion is absorbent of water, the waterproofed portion being the image which we wish to reproduce. Now we all know the repulsion which exists between water and any form of grease. Printer's ink is merely grease united with coloring-matter. It follows, that our gelatine sheet, having water applied to it, will absorb the water in its unchanged parts; and, if ink is then rolled over it, the ink will adhere only to the waterproofed or altered parts. This flexible sheet of gelatine, then, prepared as we have seen, and having had the image impressed upon it, becomes the heliotype plate, capable of being attacherl to the bed of an ordinary printing-press, and printed in the ordinary manner. Of course, such a sheet must have a solid base given to it, whieh will hold it firmly on the bed of the press while printing. This is accomplished by uniting it, under water, with a metallic plate, exhausting the air between the two surfaees, and attaching them by atmospheric pressure. The plate, with the printing surface of gelatine attached, is then placed on an ordinary platen printing-press, and inked up with ordinary ink. A mask of paper is used to secure white margins for the prints; and the impression is then made, and is ready for issue."

CHAPTER X.

PROJECTIONS AND INTERSECTIONS BY THE THIRD-ANGLE METHOD.-THE DEVELOPMENT OF SURFACES FOR SHEET METAL PATTERN MAKING.-UPPER CHORD POST-CONNECTION OF A RAILROAD BRIDGE.-SPUR GEAR.-HELICAL SPRINGS.-BOLTS, SCREWS AND NUTS, WITH TABLES.

383. The mechanical drawings preliminary to the construction of machinery, blast furnaces, stone arches, buildings, and, in fact, all architectural and engineering projects, are made in accordance with the principles of Descriptive Geometry. When fully dimensioned they are called working drawings.

The object to be represented is supposed to be placed in either the first or the third of the four angles formed by the intersection of a horizontal plane, H , with a vertical plane, V. (Fig. 228).

The representations of the object upon the planes are, in mathematical language, projections, and are obtained by drawing perpendiculars to the planes H and V from the various points of the object, the point of intersection of each such projecting line with a plane giving a projection of the original point. Such drawings are, obviously, not "views" in the ordinary sense, as they lack the perspective effect which is involved in having the point of sight at a finite distance; yet in ordinary parlance the terms top view, horizontal projection and plan are used synonymously; as are front view and front elevation with vertical projection, and side elevation with profle view, the latter on a plane perpendicular to both H and V , and called the profile plane.

Although the words "plan" and "elevation" are the ones most frequently employed by architects, while engineers generally give "view" or "projection" the preference, no attempt at uniformity in their use has been made in the following matter, the aim being rather, by their occurring interchangeably, to familiarize the student equally with standard terminology.

Until the last decade of the first century of Descriptive Geometry (1795-1895) problems were solved as far as possible in the first angle. As the location of the object in the third angle - that is, below the horizontal plane and behind the vertical-results in a grouping of the views which is in a measure self-interpreting, the Third Angle Method is, however, to a considerable degree supplanting the other for machine-shop work.

The advantageous grouping of the projections which constitutes the only-though a quite suf-ficient-justification for giving it special treatment, is this: The front view being always the central one of the group, the top view is found at the top; the view of the right side of the object appears on the right; of the left-hand side on the left, etc. Thus, in Fig. 228 (a), with the hollow block $B D F S$ as the object to be representcd, we have $a d e s$ for its horizontal projection, $c^{\prime} d^{\prime} e^{\prime} f^{\prime}$ for its vertical projection, $f^{\prime \prime} e^{\prime \prime} s^{\prime \prime} x^{\prime \prime}$ for the side elevation; then on rotating the plane H clockwise on G. L. into coincidence with V , and the profile plane P about $Q R$ until the projection $f^{\prime \prime} e^{\prime \prime} s^{\prime \prime} x^{\prime \prime}$ reaches $f^{\prime \prime \prime} e^{\prime \prime \prime \prime} s^{\prime \prime \prime} x^{\prime \prime \prime}$, we would have that location of the views which has just been described.

The lettering shows that each projection represents that side of the object which is toward the plane of projection.
384. The same grouping can be arrived at by a different conception, which will, to some, have advantages over the other. It is illustrated by Fig. 228 (b), in which the same object as before is
supposed to be surrounded by a system of mutually-perpendicular transparent planes, or, in other words, to be in a box having glass sides, and on each side a drawing made of what is seen through that side, excluding the idea, as before, of perspective view, and representing each point by a per-

Fig. 228.

pendicular from it to the plane. The whole system of box and planes, in the wood-cut, is rotated 90° from the position shown in Fig. 228 (a), bringing them into the usual position, in which the observer is looking perpendicularly toward the vertical plane.

Fis. 230.

385. In Fig. 229 we may illustrate either the First or the Third Angle method, as to the top view of the object; ades in the upper plane being the plan by the latter method, and $a_{1} d_{1} e_{1} s_{1}$ by the former.

Disregarding $Q T X N$ we have the object and planes illustrating the first-angle method throughout, the lettering of each projection showing that it represcnts the side of the object farthest from the plane, making it the exact reverse of the third-angle system.

In the ordinary representation the same object would be represented simply by its three views as in Fig. 230. In the elevations the short-dash lines indicatc the invisible edges of the hole.

The arcs show the rotation which carrics the profile view into its proper place.

386. For the sake of more readily contrasting the two methods a group of views is shown in Fig. 231, all above G.L., illustrating an object by the First Angle system, while all below $H K$ represonts the same object by the Third Angle method.

When looking at Figurcs 1, 2, 3 and 4 the observer queries: What is the object, in space, whose front is like Fig. 1, top is like Fig. 2, left side is like Fig. 3 and right side like Fig. 4?

For the view of the left side he might imagine himself as having been at first between G and H, looking in the direction of arrow N, after which both himself and the object were turned, together
to the right, through a ninety-degree arc, when the same side would be presented to his view in Fig. 3. Similarly, looking in the direction of the arrow M, an equal rotation to the left, as indicated by the arcs $1-2,3-4,5-6$, etc., would give in Fig. 4 the view obtained from direction M. His mental queries would then be answered about as follows: Evidently a cubical block with a rectangular recess- $r^{\prime} v^{\prime} d^{\prime} c^{\prime}$-in front; on the rear a prismatic projection, of thickness $p h$ and whose height equals that of the cube; a short cylindrical ring projecting from the right face of the cube; an angular projecting piece on the left face.

In Fig. 2 the line $r v$ is in short dashes, as in that view the back plane of the recess $r^{\prime} v^{\prime} d^{\prime} c^{\prime}$ would be invisible. In Fig. 4 the back plane of the same recess is given the letters, $v^{\prime \prime} d^{\prime \prime}$, of the edge nearest the observer from direction M.

To illustrate the third angle method by Fig. 231 we ignore all above the line $H K$. In Fig. 5 we have the same front elevation as before, but above it the view of the top; below it the view of the bottom exactly as it would appear were the object held before one as in Fig. 5, then given a ninetydegree turn, around $a^{\prime} b^{\prime}$, until the under side became the front elevation.

Fig. 7 may as readily be imagined to be obtained by a shifting of the object as by the rotation of a plane of projection; for by translating the object to the right, from its position in Fig. 5, then rotating it to the left 90° about $b^{\prime} n^{\prime}$, its right side would appear as shown.
387. For convenient reference a gencral resumé of terms, abbreviations and instructions is next presented, once for all, for use in both the Third Angle and First Angle methods.
(1) H, V, P the harizontal, vertical and profile planes of projection respectively.
(2) H-projector the projecting line which gives the horizontal projection of a point.
(3) V-projector. the projecting line giving the projection of a point on V.
(4) Projector-plane. the profile plane containing the projectors of a point.
(5) h. p. the horizontal projection or plan of a point or figure.
(6) v. p. the vertical projection or elevation of a point or figure.
(7) b.t. horizontal trace, the intersection of a line or surface with H.
(8) v. t. vertical trace, the intersection of a line or surface with V.
(9) H-traces, V-traces. plural of horizontal and vertical traces respectively.
(10) G. L. ground line, the line of intersection of V and H.
(11) V -parallel a line parallel to V and lying in a given plane.
(12) A horizontal... any horizontal line lying in a given plane.
(13) Line of deelivity......... the steepest line, with respect to one plane, that can lie in another plane.
(14) Rabatment revolution into H or V about an axis in such plane.
(15) Counter-rabatment or revolution. restoration to original position.
388.

For Problems relating salely to the Point, Line and Plane.
Given lines should be fine, continuous, black; required lincs hcavy, continuous, black or red; construction lines in fine, continuous red, or short-dash black; traces of an auxiliary plane, or invisible traces of any plane, in dash-and-

For Problems relating to Solid Objects.

(1) Pencilling. Exact; generally completed for the whole drawing before any inking is done; the work usually from centre lines, and from the larger - and nearer - parts of the object to the smallcr or more remote.
(2) Inking of the Object. Curves to be drawn before their tangents; fine lines uniform and drawn before the shade lines; sbade lines next and with one setting of the pen, to ensure uniformity. On tapering shade lines see Art. 111.
(3) Shade Lines. In architectural work these would be drawn in accordance with a given direction of light.

In American machine-shop practice the right-hand and lower edges of a plane surface are made shade lines if they separate it from invisible surfaces. Indicate curvature by line-shading if not otherwise sufficiently evident. (See Fig. 288).
(4) Invisible lines of the abject, black, invariably, in dashes nearly one-tenth of an inch in length. - - - - - - - -
(5) Inking of lines other than of the object. When no colors are to be cmployed the following directions as to kind of line are those most frequently made. The lines may preferably be drawn in the order mentioned.

Dimension lines, a dash and dot alternately, with opening left for the dimension.
Extension lines, for dimensions placed outside the views, in dash-and-dot as for a dimension line.
Ground line, (when it cannot be advantageously omittcd) a continuous heavy line.
Construction and other explanatory lines in short dashes.
(6) When using colors the centre, dimension and extension lines may be fine, continuous, red; or the former may be blue, if preferred. Construction lines may also be red, in short dashes or in fine continuous lines.
Instead of using bottled inks the carmine and blue may preferably be taken directly from Winsor and Newton cakes, "moist colors." Ink ground from the cake is also preferable to bottled ink.

Drawings of developable and warped surfaces are much more effective if their elements are drawn in some color.
(7) Dimensions and Arrow-Tips. The dimensions should invariably be in black, printed free hand with a writingpen, and should read in line with the dimension line they are on. On the drawing as a whole the dimensions should read either from the bottom or right-hand side. Fractions should have a horizontal dividing line; although there is high sanction for the omission of the dividing line, particularly in a mixed number.

Extended Gothic, Roman, Italic Roman and Reinhardt's form of Condensed Italic Gothic are the best and most generally used types for dimensioning.

The arrow-tips are to be always drawn free-hand, in black; to touch the lines between which they give a distance; and to make an acute instead of a right angle at their point.
389. Working drawing of a right pyramid; base, an equilateral triangle $0.9^{\prime \prime}$ on a side; altitude, x.

Draw first the equilateral triangle $a b c$ for the plan of the base, making its sides of the prescribed length. If we make the edge $a b$ perpendicular to the profile plane, $O 1$, the face $v a b$ will then appear in profile view as the straight line $v^{\prime \prime} b^{\prime \prime}$. Being a right pyramid, with a rcgular base, we shall find v, the plan of the vertex, equally distant from a, b and c; and $v a, v b, v c$ for the plans of the edges.

Parallel to G.L. and at a distance apart equal to the assigned height, x, draw $m v^{\prime \prime}$ and $n c^{\prime \prime}$ as upper and lower limits of the front and side elevations; then, as the h.p. and v.p. of a point are always in the same perpendicular to G.L., we project v, a, b and c to their respective levels by the construction lines shown, obtaining $v^{\prime} \cdot a^{\prime} b^{\prime} c^{\prime}$ for the front elevation.

Fis. 232.

Projectors to the profile plane from the points of the plan give $1,2,3$, which are then carried, in arcs about 0 , to $L, 5,4$, and projected to their proper levels, giving the side clevation, $v^{\prime \prime} b^{\prime \prime} c^{\prime \prime}$.

As the actual length of an edge is not shown in either of the three views, we employ the fol-

lowing construction to ascertain it: Draw $v v_{1}$ perpendicular to $v b$, and make it equal to $x ; v_{1} b$ is then the real length of the edge, shown by rabatment about $v b$.

The development of the pyramid (Fig. 233) may be obtained by drawing an arc $A B C A_{1}$ of radius $=v_{1} b$ (the true length of edge, from Fig. 232) and on it laying off the chords $A B$, $B C, C A_{1}$ equal to $a b, b c, c a$ of the plan; then $V-A B C A_{1}$ is the plane area which, folded on $V C$ and $V B$, would give a model of the pyramid represented.
390. Working drawing of a semi-cylindrical pipe: outer diameter, x; inner diameter, y; height, z.

For the plan draw concentric semi-circles $a e d$ and $b s c$, of diameters x and y respectively, joining their extremities by straight lines $a b, c d$. At a distance apart of z inches draw the upper and lower limits of the elevations, and project to these levels from the points of the plan.

In the side view the thickness of the shell of the eylinder is shown by the distance between $e^{\prime \prime} f^{\prime \prime}$ and $s^{\prime \prime} t^{\prime \prime}$-the latter so drawn as to indicate an invisible limit or line of the object.

The line shading would usually be omitted, the shade lines generally sufficing to convey a clear idea of the form.
391. Half of a hollow, hexagonal prism. In a semi-circle of diameter ad step off the radius three times as a chord, giving the vertices of the plan $a b c d$ of the outer surface. Parallel to $b c$, and at a distance from it equal to the assigned thickness of the prism, draw $e f$, terminating it on lines (not shown)

Fig. 205.
 drawn through b and c at 60° to $a d$. From e and f draw $e h$ and $f g$, parallel respectively to $a b$ and $c d$. Drawing $a^{\prime} c^{\prime \prime}$ and $m^{\prime} t^{\prime \prime}$ as upper and lower limits, project to them as in preceding problems for the front and side elevations.
392. Working drawing of a hollow, prismatic block, stending obliquely to the rertical and profile planes.

Let the block be $2^{\prime \prime} \times 3^{\prime \prime} \times 1^{\prime \prime}$ outside, with a square opening $1^{\prime \prime} \times 1^{\prime \prime} \times 1^{\prime \prime}$ through it in the direction of its thickness. Assuming that it has been required that the two-inch edges should be vertical, we first draw, in Fig. 236, the plan $a s x b$, $3^{\prime \prime} \times 1^{\prime \prime}$, on a scale of $1: 2$. The inch-wide opening through the centre is indicated by the short-dash lines.

For the elevations the upper and lower limits are drawn $2^{\prime \prime}$ apart, and a, b, s, x, etc., projected to them. The elevations of the opening are between levels $m^{\prime} m^{\prime \prime}$ and $k^{\prime} k^{\prime \prime}$, one inch apart and equi-distant from the upper and lower outlines of the riews. The dotted construction lines and the lettering will enable the student to recognize the three views of any point without difficulty.
393. In Fig. 237 we have the same object as that illustrated by Fig. 236, but now represented as cut by a vertical plane whose horizontal trace is $v y$. The parts of the block that are actually cut by the plane are shown in section-lines in the elevations. This is done here and in some later examples merely to aid the beginner in understanding the views; but, in engineering prac-
 tice, section-lining is rarcly done on views not perpendicular to the section plane.
394. Suppression of the ground line. In machine drawing it is customary to omit the ground line, since the forms of the various viewswhich alone concern us-are independent of the distance of the object from an imaginary horizontal or vertical plane. We have only to remember that all elevations of a point are at the same level; and that if a ground line or trace of any vertical plane is wanted, it will be perpendicular to the line joining the plan of a point with its projection on such vertical plane. (Art. 286.)
395. Sections. Sectional vieus. Although earlier defined (Art. 70), a re-statement of the distinetion between these terms may well precede problems in which they will be so frequently employed.

When a plane euts a solid, that portion of the latter whicl comes in actual contact with the cutting
 plane is called the section.

A sectional riew is a riew perpendicular to the cutting plane, and showing not only the section but also the object itself as if seen through the plane. When the cutting plane is vertical such a view is called a sectional elevation; when horizontal, a scctional plan.
396. Working drawing of a regular, pentagonal pyramid, hollow, truncated by an oblique plane; also the development, or "pattern," of the outer surface below the cutting plane. For data take the altitude at $2^{\prime \prime}$; inclination of faces, θ° (meaning any arbitrary angle); inclination of section plane, 30°; distance between inner and outer faces of pyramid, $\frac{1}{4}^{\prime \prime}$.
(1) Locate v and v^{\prime} (Fig. 238) for the plan and elevation of the vertex, taking them sufficiently apart to avoid the overlapping of one view upon the other. Through v draw the horizontal line $S T$, regarding it not only as a centre line for the plan but also as the h. t. of a central, vertical, reference plane, parallel to the ordinary vertical plane of projection.

(The student should note that for convenient reference Fig. 238 is repeated on this page.)
On the rertical line $v v^{\prime}$ (at first indefinite in length) lay off $v^{\prime} s^{\prime}$ equal to $2^{\prime \prime}$, for the altitude (and axis) of the pyramid, and through s^{\prime} draw an indefinite horizontal line, which will contain the v. p. of the base, in both front and side views.

Draw $v^{\prime} b^{\prime}$ at θ° to the horizontal. It will represent the v. p. of an outer face of the pyramid, and b^{\prime} will be the v. p. of the edge $a b$ of the base. The base $a b c d e$ is then a regular pentagon circumscribed about a circle of centre v and radius $v i=s^{\prime} b^{\prime}$. Since the angle $a v b$ is 72° (Art. 92) we get a starting corner, a or b, by drawing $v a$ or $v b$ at 36° to $S T$, to intercept the vertical through b^{\prime}. The plans of the edges of the pyramid are then $v a, v b, v c, v d$ and $v e$. Project d to d^{\prime} and draw $v^{\prime} d^{\prime}$ for the elcration of $v d$; similarly for $v e$ and $v c$, which happen in this case to coincide in vertical projection.

For the inner surface of the pyramid, whose faces are at a perpendicular distance of $\frac{1}{4}{ }^{\prime \prime}$ from the outer, begin by drawing $g^{\prime} l^{\prime}$ parallel to and $\frac{1^{\prime \prime}}{4}$ from the face projected in $b^{\prime} v^{\prime}$; this will cut the axis at a point t^{\prime} which will be the vertex of the inner surface, and $g^{\prime} t^{\prime}$ will represent the elcration of the inner face that is parallel to the face $a v b-v^{\prime} b^{\prime}$; while $g h$, vertically above g^{\prime} and ineluded between $v a$ and $v b$, will be the plan of the lower edge of this face. Complete the pentagon $g h \cdots k$ for the plan of the inner base; project the corners to $b^{\prime} d^{\prime}$ and join with t^{\prime} to get the elevations of the interior edges.

The section. In our figure let $G^{\prime} H^{\prime}$ be the section plane, situated perpendicular to the vertical plane and inclined 30° to
 the horizontal. It intersects $v^{\prime} d^{\prime}$ in p^{\prime}, which projects upon $v d$ at p. Similarly, since $G^{\prime} H^{\prime}$ cuts the edges $v^{\prime} c^{\prime}$ and $v^{\prime} e^{\prime}$ at points projected in o^{\prime}, we project from the latter to $v c$ and $v c$, obtaining o and q. A like construction gives m and n. The polygon $m n o p q$ is then the plan of the outer boundary of the scetion.

The inner edge $g^{\prime} t^{\prime}$ is cut by the section plane at l^{\prime}, which projects to both $v h$ and $v g$, giving the parallel to $m n$ through l. The inner boundary of the section may then be completed either by determining all its vertices in the same way or on the principle that its sides will be parallel to those of the outer polygon, since any two planes are cut by a third in parallel lines.

The line $m^{\prime} p^{\prime}$ is the vertical projection of the entire section.
(2) The side elocation. This might be obtained exactly as in the five preceding figures, that is, by actually locating the side vertical, or profile, plane, projecting upon it and rotating through an are of 90°. In engineering practice, however, the method now to be described is in far more gcneral use. It does not do away with the profile plane, on the contrary presupposes its existence, but instead of actually locating it and drawing the ares which so far have kept the relation of the views constantly before the eye, it reaches the same result in the following manner: A vertical line $S^{\prime} T^{\prime \prime}$ is drawn at some convenient distance to the right of the front elevation; the distance, from $S T$, of any point of the plan, is then laid off horizontally from $S^{\prime} T^{\prime \prime}$, at the same height as the front elevation of the point. For, as earlier stated, $S T$ was to be regarded as the horizontal trace of a vertical plane. Such plane would evidently cut a profle plane in a vertical line, which we may eall $S^{\prime} T^{\prime \prime}$, and let the $S^{\prime} T^{\prime \prime}$ of our figure represent it after a nincty-degree rotation has occurred. The distances of all points of the object, to either the front or rear of the vertical plane on $S T$, would, obviously, be now seen as distances to the left or right, respectively, of the trace $S^{\prime} T^{\prime}$, and would be directly transferred with the dividers to the lines indicating their level. Thus, $e^{\prime \prime}$ is on the level of e^{\prime}, but is to the right of $S^{\prime} T^{\prime}$ the same distance that e is above (or, in reality, behind) the plane $S T$; that is, $e^{\prime \prime} d^{\prime \prime}$ equals $e u$. Similarly $d^{\prime \prime} b^{\prime \prime}$ equals $i b ; n^{\prime \prime} x^{\prime \prime}$ equals $n x$.

It is usual, where the object is at all symmetrical, to locate these reference planes centrally, so that their traces, used as indicated, may bisect as many lines as possible, to make one setting of the dividers do double work.
(3) True size of the section. Sectional view. If the section plane $G^{\prime} H^{\prime}$ were rotated directly about its trace on the central, vertical plane $S T$, until parallel to the paper, it would show the section $m^{\prime} p^{\prime}-m n o p q$ in its true size; but such a construction would cause a confusion of lines, the new figure overlapping the front elevation. If, however, we transfer the plane $G^{\prime} H^{\prime}$-keeping it parallel to its first position during the motion-to some new position $S^{\prime \prime} T^{\prime \prime}$, and then turn it 90° on that line, we get $m_{1} n_{1} o_{1} p_{1} q_{1}$, the desired view of the section. The distances of the vertices of the section from $S^{\prime \prime} T^{\prime \prime}$ are derived from reference to $S T$ exactly as were those in the side elevation; that is, $m_{1} x_{1}=m x=m^{\prime \prime} x^{\prime \prime}$. We thus see that one central, vertical, reference plane, $S T$, is auxiliary to the construction of two important views; $S^{\prime} T^{\prime}$ represents its intersection with the profile or side vertical plane, while $S^{\prime \prime} T^{\prime \prime}$ is its (transferred) trace upon the section plane $G^{\prime} H^{\prime}$. For the remainder of the sectional view the points are obtained exactly as above described for the section; thins $c^{\prime} c_{1} e_{1}$ is perpendicular to $S^{\prime \prime} T^{\prime \prime} ; e_{1} u_{1}$ equals $e u$, and $c_{1} u_{1}$ equals $c u$.
(4) To determine the actual length of the various edges. The only edge of the original, uncut pyramid, that would require no construction in order to show its true length, is the extreme righthand one, which-being parallel to the vertieal plane, as shown by its plan $r d$ being horizontal-is seen in elevation in its true size, $r^{\prime} d^{\prime}$. Since, however, all the edges of the pyramid are equal, we may find on $v^{\prime} d^{\prime}$ the true length of any portion of some other edge, as, for example $o^{\prime} c^{\prime}$, by taking that part of $v^{\prime} d^{\prime}$ which is intereepted between the same horizontals, viz.: $o^{\prime \prime \prime} d^{\prime}$.

Were we compelled to find the true length of $o^{\prime} c^{\prime}, o c$, independently of any such convenient relation as that just indicated, we would apply one of the methods fully illustrated by Figs. 183, 184 and 187, or the following "shop" modification of one of them: Parallel to the plan oc draw a line $y z$, their distance apart to be equal to the difference of lovel of o^{\prime} and c^{\prime}, which difference may be obtained from either of the elevations; from the plan of the higher end of the line draw the common perpendicular of, and join f with ϵ, obtaining the desired length $f \varepsilon$.
(5) To show the exact form of any fuce of the pyramid. Taking, for example, the face ocd p, revolve op about the horizontal edge cel until it reaches the level of the latter. The actual distance
of o trom c, and of p from d will be the same after as before this revolution, whike the paths of o and p during rotation will be projected in lines or and $p u$, each perpendicular to $c d$; therefore, with c as a centre, cut the perpendicular $o f$ by an arc of radius $f(c$-just ascertaned to be the real length of $o c$, and, similarly, cut $p w$ by an are of radius $d w=j^{\prime} d^{\prime}$; join r with c, u with d. draw wor and we have in colur the form desired.
(6) The development of the outer sucufuer of the tremented pyrremid. With any point J as a centre (Fig. 239) and with radius equal to the actual length of an edge of the pyramid (that is, equal to $v^{\prime} d^{\prime}$, Fig. 238) draw an indefinite are, on which lay off the chords $D C, C B, B A, A E, E D$, equal respectively to the like-lettered edges of the base $a b c d e$; join the extremities of these chords with V : then on $D V$ lay off $D P=d^{\prime} p^{\prime}$; make $C O=E Q=d^{\prime} o^{\prime \prime \prime}=$ the real length of $c^{\prime} o^{\prime}$; also $B N=$ $A M=d^{\prime} m^{\prime \prime \prime}=$ the actual length of $a^{\prime} m^{\prime}$ and $b^{\prime} n^{\prime}$; join the points P, O, etc., thus obtaining the development of the outer boundary of the section. The pattern $A_{1} B_{1} C D E_{1}$ of the base is obtained from the plan in Fig. 238, while $N M_{2} \eta_{2} \eta_{2}$ is a duplicate of the shaded part of the sectional vieu in the same figure.
(7) In making a model of the pyramid the student should use heary Pristol board, and make allowance, wherever needed, of an extra width for overlap, slit as at x, y and z (Fig. 239). On this

$$
\text { Fig. } 239 .
$$

overlap put the mucilage which is to hold the model in shape. The faces will fold better if the Bristol board is eut half way through on the foleling edge.
397. For convenient reference the characteristic features of the Third Angle Method, all of which have now been fully illustrated, may thus be briefly summarized:
(a) The varions views of the object are so grouped that the plon or top view eomes abore the front elevation; that of the bottom below it; and analogously for the projections of the right and left sides.
(b) Central, reference planes are taken through the various views, and, in each view, the distance of any point from the trace of the central plane of that view is obtained by direct transfer, with the dividers, of the distance between the same point and reference plane, as seen in some other view, usually the plan.
398. To draw a truncoted, pyramidal block, having a rectangular recess in its top; angle of sides, 60°; lower base a rectangle $3^{\prime \prime} \times 2^{\prime \prime}$, having its longer sides at 30° to the horizontal; total height $\frac{6^{\prime \prime}}{10}$; recess $1 \frac{9}{10}{ }^{\prime \prime} \times \frac{9}{10}$ ", and $\frac{1^{\prime \prime}}{4}$ deep. (Fig. 240.)

The small oblique projection on the right of the plan shows, pictorially, the figure to be drawn.

The plan of the lower base will be the rectangle abdc, $3^{\prime \prime} \times 2^{\prime \prime}$, whose longer edges are inelined 30° to the horizontal.

Take $A B$ and $m n$ as the H -traces of auxiliary, rertical planes, perpendicular to the side and end faces of the block. Then the sloping face whose lower edge is $d e$, and which is inclined 60° to H , will have $d_{1} y$ for its trace on plane $m \mu$. A parallel to $m n$ and $\frac{\sigma^{\prime \prime}}{10}$ from it will give s_{1}, the auxiliary projection of the upper edge of the tace seed, whence sv-at first indefinite in length-is derived, parallel to $l e$. Similarly the end face $b t s d$ is obtained by projecting $d b$ upon $A B$ at b_{1}, drawing $b_{1} z$ at $\left(60^{\circ}\right.$ to $A B$ and terminating it at x_{2} ly $C D$, drawn at the same height ($\frac{6^{\prime \prime}}{10}$) as before. A parallel to $b d$ through s_{2} intersects $v s_{1}$ at s, giving one corner of the plan of the upper base, from which the rectangle stur is completed, with sides parallel to those of the lower base.

As the recess has vertieal sides we may draw its plan, opqr, directly from the given dimensions, and show the depth by short-dash lines in each of the elevations.

The ordinary elcvations are derived from the plan as in preceding problems; that is, for the front elcration, $a^{\prime} u^{\prime} s^{\prime} d^{\prime}$, by verticals through the plans, terminating according to their height, either on $a^{\prime} d^{\prime}$ or on $u^{\prime} s^{\prime}$, $\frac{6^{\prime \prime}}{10}$ above it. For the side elevation, $e^{\prime \prime} v^{\prime \prime} t^{\prime \prime} b^{\prime \prime}$, with the heights as in the front elevation, the distances to the right or left of $s^{\prime \prime}$ equal those of the plans of the same points from si, regarding the latter as the h.t. of a central, vertical plane, parallel to V .

The plane $s T$ of right section, perpendicular to the axis $K L$, cuts the block in a section whose true size is shown in the line-tinted figure $g_{1} h_{1} k_{1} l_{1}$, and whose construction hardly needs detailed treatment after what has preceded. The shaded, longitudinal section, on central, vertical plane $K L$, also interprets itself by means of the lettering.

The true size of any face, as auve, may be shown by rabatment about a horizontal edge, as ae. As v is actually $\frac{6^{\prime \prime}}{10}$ above the level of e, we see that $v e$ (in space) is the hypothenuse of a triangle of base ve and altitude $\frac{f^{\prime \prime}}{10}$. Construct such a triangle, $v v_{3} e$, and with its hypothenuse $v_{2} e$ as a radius, and e as a centre, obtain v_{1} on a perpendicular to $a e$ through v and representing the path of rotation. Finding u_{1} similarly we have $a u_{1} v_{1} e$ as the actual size of the face in question.

If more views were needed than are shown the student ought to have no difficulty in their construction, as no new principles would be involved.
399. To draw a hollow, pentagonal prism, $2^{\prime \prime}$ long; edges to be horizontal and inclined 35° to V ; base, a regular pentagon of $1^{\prime \prime}$ sides; one face of the prism to be inclined 60° to H ; distance between inner and outer faces, $\frac{1}{4}^{\prime \prime}$.

In Fig. 241 let $H K$ be parallel to the plans of the axis and edges; it will make 35° with a horizontal line. Perpendicular to $H K$ draw $m n$ as the h.t. of an auxiliary, vertical plane, upon which we may suppose the base of the prism projected. In end view all the faces of the prism would be seen as lines, and all the edges as points. Draw $a_{1} b_{1}$, one inch long and at 60° to $m n$, to represent the face whose inclination is assigned. Completing the inner and outer pentagons, allowing $\frac{1}{4}^{\prime \prime}$ for the distance between faces, we have the end view complete. The plan is then
obtained by drawing parallels to $H K$ through all the vertices of the end view, and terminating all by vertical planes, $a d$ and $g h$, parallel to $m n$ and $2^{\prime \prime}$ apart.

The elevations will be ineluded between horizontal lines whose distance apart is the extreme height z of the end view; and all points of the front clevation are on verticals through their plans, and at heights derived from the end view. The most expeditious method of working is to draw a horizontal reference line, like that of Fig. 243, which shall contain the lowest edge of each elevation; measuring upward from this line lay off, on some random, vertical line, the distance of each point of the end view from a line (as the parallel to $m n$ through b_{1} in Fig. 241, or $x y$ in Fig. 243) which represents the intersection of the plane of the end view by a horizontal plane containing the lowest point or edge of the object; horizontal lines, through the points of division thus obtained, will contain the projections of the corners of the front elevation, which may then be definitely located by vertical lines let fall from the plans of the same points. For example, e^{\prime} and f^{\prime}, Fig. 241, are at a height, z, above the lowest line of the elevation, equal to the distance of e_{1} from the dotted line through b_{1}; or, referring to Fig. 243, which, owing to its greater complexity, has its construction given more in detail, the distance upward from M to line G is equal to $g_{1} g_{2}$ on the end view; from M to Q equals $q_{1} q_{2}$, and similarly for the rest.

Since the profile plane is omitted in Fig. 241 we take $M^{\prime} N^{\prime \prime}$ to represent the trace upon it of the auxiliary, central, vertical plane whose h.t. is $M N$; as already explained, all points of the side elevation are then at the same level as in the front elevation, and at distances to the right or left of $M^{\prime} N^{\prime}$ equal to the perpendicular distanees of their plans from $M N$. For example, $e^{\prime \prime} s^{\prime \prime}$ equals es.

The shade lines are located on the end view on the assumption that the observer is looking toward it in the direction $H K$.
400. Projections of a hollow, pentagonal prism, cut by a vertical plane oblique to V. Letting the data for the prism be the same as in the last problem, we are to find what modification in the appearance of the elevations would result from cutting through the object by a vertical plane $P Q$ (Fig. 242) and removing the part $h x d i$ which lies in front of the plane of section.

Each vertex of the section is on an edge of the elevation and is vertically below the point where $P Q$ cuts the plan of the same edge; the student can, therefore, readily convert the elevations of Fig. 241 into reproductions of those of Fig. 242 by drawing across the plan of Fig. 241 a trace $P Q$, similarly situated to the $P Q$ of Fig. 242. Supposing that done, refer in what follows to both Figures 241 and 242.

Since $P Q$ contains h we find h^{\prime} as one corner of the section. Both ends of the prism being vertical, they will be cut by the vertical plane $P Q$ in vertical lines; therefore $h^{\prime} l^{\prime}$ is vertical until the top of the prism is reached, at l^{\prime}. Join l^{\prime} with x^{\prime}, the latter on the vertical through x-the intersection of $P Q$ with the right-hand top edge $e d, e^{\prime} d^{\prime}$. From x the cut is vertical until the interior of the prism is reached, at o^{\prime}, on the line $5-4$. We next reach w^{\prime} on edge No. 4. The line $o^{\prime} w^{\prime}$ has to be parallel to $x^{\prime} l^{\prime}$ (two parallel planes are cut by a third in parallel lines); but from w^{\prime} the interior edge of the section is not parallel to $l^{\prime} h^{\prime}$, since $P Q$ is not cutting a vertieal end, but the inclined, interior surface. The other points hardly need detailed description, being similarly found.

The side eleration is obtained in accordance with the principle fully described in Art. 396 and summarized in Art. 397 (b). $M^{\prime} N^{\prime}$ represents the same plane as $M N ; e^{\prime \prime} s^{\prime \prime}$ equals es, and analogously for other points.
401. In his elementary work in projections and sections of solids the student is recommended to lay an even tint of burnt sienna, medium tone, over the projections of the object, after which
any section may be line-tinted; and, if he desires to further improve the appearance of the views, distinetions may be made between the tones of the various surfaces by overlaying the burnt sienna with flat or graded washes of India ink.

402. Projections of an L-shaped block, after being cut by a plane oblique to both V and H ; the block also to be inclincd to V and H , and to have running through it two, non-communicating, rectangular openings, whose directions are mutually perpendicular.

If the dotted lines are taken into account the front elevation in Fig. 243 gives a elear idea of the shape of the original solid. The end view and plan give the dimensions.

Requiring the horizontal edges of the bloek to be inelined 30° to V , draw the first line $x y$ at 60° to the horizontal; the plans of all the horizontal edges will be perpendicular to $x y$.

Let the inclination of the bottom of the bloek to H be 20°. This is shown in the end view by drawing $m_{1} p_{1}$ at 20° to $x y$. All the edges of the end riew of the object will then be parallel or perpendicular to $m_{1} p_{1}$ and should be next clrawn to the given dimensions.

The central opening, $l_{1} d_{1} n_{1} 0_{1}$, through the larger part of the block, has its faces all $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ from the outer faces. In the plan this is shown by drawing the lines lettered of at a distance of $\frac{1_{3}^{\prime \prime}}{3}$ from the boundary lines, which last are indicated as $1 \frac{1}{2}{ }^{\prime \prime}$ apart.

The opening $q_{1} r_{1} r_{1} l_{1} t_{1}$ has three of its faces $\frac{1}{4}{ }^{\prime \prime}$ from the outer surfaces of the block, while the fourth, $q_{1} r_{1}$, is in the same plane as the cuter face $h_{1} e_{1}$.

The cutting plane $X Y$ gives a section which is seen in end view in the lines $c_{1} g_{1}$, $i_{1} j_{1}$ and $k_{1} l_{1}$; white in plan the section is projected in the shaded portion, obtained, like all other parts of the plan, by perpendiculars to $x y$ from all the points of the end riew.

For the front elevation draw first the "reference line." To provide against overlapping of projections the reference line should be at a greater distance below the lowest point, l, of the plan, than the greatest height $\left(a_{1} a_{2}\right)$ of the end view above $x y$. Then on $M W^{\top}$ lay off from M the heights of the various horizontal edges of the block, deriving them from the end view. Thus $a_{1} a_{2}$ is the height of $A a^{\prime}$ from M; from M to level B equals $b_{1} b_{2}$, ete. Next project to the level A from points $a a$ of the plan, getting edge $a^{\prime} a^{\prime}$ of the elevation, and similarly for all the other corners of the block. Notice that all lines that are parallel on the object will be parallel in each projeetion (exeept when their projections coincide); also that in the case of sections, those outlines will be parallel which are the intersection of parallel planes by a third plane. These prineiples may be advantageously employed as checks on the accuracy of the construction by points. The construction of the side elevation is left to the student.

403. Projections and sections of a block of irregular form, with two mutually perpendicular openings through it, and with equal, square frames projecting from each side.

In Fig. 244 the side elevation shows clearly the object dealt with, while we look to the end view for most of the dimensions. The large central opening extends from $w_{1} w_{2}$ to $x_{1} y_{1}$. The width of the main portion of the block is shown in plan as $2 \frac{1}{4}^{\prime \prime}$, between the lines lettered $a e$. The square frames project $\frac{1}{2}^{\prime \prime}$ from the sides, while the width of the central opening between the lines $w x$ is $\frac{3}{4}$.

Two section planes are indicated, $S T$ across the end view, and $P Q$-a vertical plane-across the plan; the section made by plane $S T$ is, however, shown only in fringed outline on the plan, though fully represented on the side elevation. The front elevation shows the section made by plane $P Q$, with the visible portion of that part of the object that is behind the cutting plane.

Although detailed explanation of this problem is unnecessary after what has preceded, yet a brief recapitulation of the various steps in the construction of the views may be appreciated by some, before passing on to a more advanced topic.
(a) $E F$, the first line to draw, is the trace of the vertical plane on which the end view is projected, and is at an angle of 60° to a horizontal line in order that the edges of the object (as $a a, b b---e e$) may be inclined at 30° to the front vertical plane, which we may assume as one of the conditions of the problem.
(b) A rotation of the object through an angle θ° about a horizontal axis that is perpendicular to $E F$, as, for example, the edge through f, is shown by the inclination of the end view to $E F$ at an angle $a_{1} f_{1} E=\theta^{\circ}$.
(c) Drawing the end view at the requircd angle to $E F$ we next derive the plan therefrom by perpendiculars to $E F$, terminating them on parallels to $E F$ (as the lines $a e, w x, n h$, etc.,) whose distances apart conform to given data.
(d) The elevations. For these a common reference line $E^{\prime} F^{\prime} f^{\prime \prime}$ is taken, horizontal, and sufficiently below the plan to avoid an orerlapping of views.

For the front elevation any point as b^{\prime}, is found vertically below its plan b, and is as far from $E^{\prime} F^{\prime}$ as b_{1} is-perpendicularly-from $E F$.

The height at which the section plane $P Q$ cuts any line is similarly obtained. Thus at z it cuts the vertical end face of the block in a line which is carried over on the end view in the indefinite line $Z z_{2}$; the portions of $Z z_{2}$ which lie on the end view of the frame $g_{1} h_{1} i_{1}$ are the only real parts to transfer to the front elevation, and are seen on the latter, vertically below z and running from z^{\prime} down; their distances from $E^{\prime} F^{\prime}$ being simply those from Z, on the end view, transferred.

The side elevation. Any point or edge is at the same level on the side elevation as on the front; hence the edge through $b^{\prime \prime}$ is on $b^{\prime} b^{\prime}$ produced. The distances to the right or left of $M^{\prime} N$ equal those of the corresponding points on the plan from $M N$; thus $0^{\prime \prime} j^{\prime}$ equals $o j$, etc.
404. Changed planes of projections. In the problems of Arts. 399-403 the employment of an "end view"—which was simply an auxiliary eleration-has prepared the student for the further use of planes other than the usual planes of projection; and if the auxiliary plan is now mastered he is prepared to deal with any case of rotation of object about vertical or horizontal axes, since new and properly located planes of projection are their practical equivalent.

In Fig. 245 the object is represented in its initial position by the line-tinted figures marked "first plan" and "first elevation." The third and fourth elevations show somewhat more pictorially that it is a hollow, truncated, triangular prism, having through it a rectangular opening that is perpendicular to the front and rear faces.

(a) Rotation about a vertical axis, or its equivalent, a change in the vertical plane of projection. Result: second elevation derived from first plan and elevation.
Let the axis be one of the vertical edges of the object, as that at d in the first plan ; also let the rotation be through an angle $Y d o$ or θ°, (θ being taken, for convenience, equal to the angle $Y a F$, which-with the line $p q$-will be employed in a later construction). If we were actually to rotate the object through an angle θ the new plan would be the exact counterpart of the first, but its horizontal edges would make an angle θ with their former direction, and the new elevation would partly overlap the first one. To avoid the latter unnecessary complication, as also the duplication of the plan, we make the first plan do double duty, since we can accomplish the equivalent of rotation of the object by taking a new vertical plane that makes an angle θ with the plane on which the first elevation was made. This equivalence will be more evident if some small object, as a piece of india rubber, is placed on the "first plan" with its longer edges parallel to $a b$, and is then viewed in the direction of arrow No. 2 through a pane of glass standing vertically on $X Z$; after which turn both the object and the glass through the angle θ until the glass stands vertically on $e^{\prime} j^{\prime}$ and then view in the direction of arrow No. 1.

The second plane may be located anyuhere, as long as the angle θ is preserved; $X Z$, making angle θ at x_{1} with $c^{\prime} j^{\prime}$, is, therefore, a randone position of the new plane, and the projection upon it is our "second elevation."

Since the heights of the various corners of an object remain unchanged during rotation about a rertical axis we will find all points of the second elevation at distances from the reference line $X Z$ that are derived from the first elevation, and laid off on lines drawn perpendicular to $X Z$ from the vertices of the plan: thus $a O$ is perpendicular to $X Z$, and $O a^{\prime \prime}$ equals $o^{\prime} a^{\prime}$; $c^{\prime \prime} J^{\prime}$ equals $c^{\prime} j^{\prime}$, etc.
(b) Rotation about a horizontal axis, or its equivalent, the adoption of a new horizontal plane. Result: second plan derived from first plan and sccond elevation.
Having in the last case illustrated the method of complying with the condition that rotation should occur through a given angle (which is incidentally shown again, however, in the next construction) we now choose an axis $p q$ so as to illustrate a different kind of requirement, viz. that during rotation the heights of any two points of the object, which were at first at the same level as the axis, shall be in some predetermined ratio, regardless of the amount of rotation. In the figure it is assumed that $e^{\prime}(d)$ is to be at one-fifth the height of $j^{\prime} j$, and that rotation shall occur about an axis passing through the lower end o^{\prime} of the vertical edge at a. By drawing $a d$ and $a j$, dividing the latter into five equal parts, and joining d with n-the first point of division from a we obtain the direction $d n$, parallel to which the axis $p q$ is drawn through a. The distance $d p$ is then one-fifth of $j q$, and they shorten in the same ratio, as rotation occurs.

After locating the axis the next step is, invariably, the drawing of an elevation upon a plane perpendicular to the axis. This we happen, however, to have already in our "second elevation," having, in the interest of compactness, so taken θ in the preceding case that the vertical plane $X Z$ would be perpendicular to the axis we are now ready to use.

Any rotation of the object about $p q$ will, eridently, not change the form of the "second elevation" but simply incline it to $X Z$. But, as before, instead of actually rotating the object, which would probably give projections overlapping those from which we are working, we adopt a new plane $M N$ as a horizontal plane of projection, so taken that it fulfills either of the following conditions: (a) that the object should be rotated about $p q$ through an angle $J^{\prime} O N=\beta$; (b) that the corner J^{\prime} should be higher tr ηO by an amount $x, M N$ being drawn tangent to an arc having J^{\prime} for its centre, and $J^{\prime} f \quad$ to x) for its radius.

Reference to Fig. 246 may make it clearer to some that $M N$ is the trace of the new plane upon the vertical plane whose h.t. is $X Z$; that $O N$ lies vertically below the line $X Z$ and is as truly perpendicular to the axis of rotation as is $X Z$; also that in Fig. 245 a view in the direction of arrow No. 3 (i. e., perpendicular to $M N$) is equivalent to a view perpendicular to the plane V in Fig. 246 after the whole assemblage of planes and object has been rotated together about HOH until the "new plane" takes the position out of which the first horizontal plane has just been rotated.
(The remainder of the references are to Fig. 245.)
The second plan is obtained by drawing $P_{1} Q_{1}$, parallel to $M N$, to represent the transferred trace $P Q$ of a vertical reference plane taken through some edge b and parallel to the plane $Z O N$ of the second elevation; then any point d_{1} is as far from $P_{1} Q_{1}$ as the same point d on the first plan is from $P Q$; similarly, from point w_{1} to $P_{1} Q_{1}$ equals distance $w b$.
(c) Further rotation about vertical axes. To show how the foregoing processes may be duplicated to any desired extent let us suppose that the object, as represented by the second plan and elevation, is to be rotated through an angle ϕ about a vertical line through b_{1}. If the rotation actually occurred, the plan $b_{1} G_{1}$ would take the position $b_{1} G_{2}$, and the other lines of the plan would take corresponding positions in relation to a vertical plane on $P_{1} Q_{1}$. A new vertical plane on $b_{1} Q_{3}$, at an angle ϕ to $b_{1} G_{1}$, will, however, evidently hold the same relation to the plan as it stands, and transferring such new plane forward to $O^{\prime} R_{1}$ we then obtain the points of the new (third) elevation by letting fall perpendiculars to $O^{\prime} R_{1}$ from the vertices of the second plan, and on them laying off heights above $O^{\prime} R_{1}$ equal to those of the same points above $M N$ in the second elevation. Thus $j^{\prime} 9$ equals $J^{\prime} f ; W^{\prime} 6$ in the fourth equals $W^{\prime \prime} 6$ in the second.

The fourth elevation is a view in the direction of arrow No. 5, giving the equivalent of a ninetydegree rotation of the object from its last position. To obtain it take a reference line rr through some point of the second plan, and parallel to $O^{\prime} R_{1}$; then $R R^{\prime}$ represents the vertical plane on $r r$, transferred. From $R R^{\prime}$ lay off-on the levels of the same points in the third elevation-distance $1 C^{\prime \prime}=c_{2} C_{1} ; 4 W^{\prime \prime}=w_{2} w_{1}$, as in preceding analogons constructions.

THE DEVELOPMENT OF SURFACES.
405. The development of surfaces is a topic not altogether new to the student who has read Chapter V and the earlier articles of this chapter;* so far, however, it has oceurred only incidentally, but its importance necessitates the following more formal treatment, which naturally precedes problems on the interpenetration of surfaces, of which a "development" is usually the practical outeome.

[^24]A development of a surface, using the term in a practical sense, is a piece of cardboard or, more generally, of sheet-metal, of such shape that it can be either directly rolled up or folded into a model of the surface. Mathematically, it would be the contact-area, were the surface rolled out or unfolded upon a plane.

The "shop" terms for a developed surface are "surface in the flat," "stretch-out," "roll-out"; also, among sheet-metal workers it is called a pattern; but as pattern-making is so generally understood to relate to the patterns for castings in a foundry, it is best to employ the qualifying words sheet-metal when desiring to avoid any possible ambiguity.
406. The mathematical nature of the surfaces that are capable of development has been already discussed in Arts. 344-346. Those most frequently occurring in engineering and architectural work are the right and oblique forms of the pyramid, prism, cone and cylinder.
407. In Art. 120 the development of a right cylinder is shown to be a rectangle of base equal to $2 \pi r$ and altitude h, where h is the height of the cylinder and r is the radius of its base.
408. The development of a right cone is proved, by Art. 191, to be a circular sector, of radius equal to the slant height R of the cone, and whose angle θ is found by means of the proportion $R: r:: 360^{\circ}: \theta ; r$ being the radius of the base of the cone.
409. The devclopment of a right pyramid is illustrated in Art. 389, and in Case 6 .of Art. 396.
410. We next take up right and oblique prisms, and the oblique pyramid, cone and cylinder; while for the sake of completeness, and departing in some degree from what was the plan of this work when Arts. 345 and 346 were written, the regular solids will receive further treatment, and also the developable helicoid.

411. The development of a right prism. Fig. 247 represents a regular, hexagonal prism. The six faces being equal, and $e b c f$ showing their actual size, we make the rectangles $A B C D$, $B E F C$, etc., each equal to $e b c f$; then $A A_{1}$ equals the perimeter of the upper base, and we have the rectangle $A A_{1} B_{1} D$ for the development sought.
412. The development of a right prism below a cutting plane. Taking the same prism as in the last article develop first as if there were no section to be taken into account. This gives, as before, a rectangle of length $A A_{1}$ and of altitude $a d$, divided into six equal parts. Then project, from each point where the plane cuts an edge, to the same edge as seen on the development.

Fing- 2チョ.

413. Right section. Rectified curve. Developed curve. A plane perpendicular to the axis of a surface cuts the latter in a right section. The bases of right cones, pyramids, cylinders and prisms fulfil this condition and require no special construction for their determination; but the development of an oblique form usually involves the construction of a right section and then the laying off on a straight line of a length equal to the perimeter of such section. Should the right section be a curve its equivalent length on a straight line is called its rectification, which should not be confounded with its development, the latter not being necessarily straight.
414. The development of an oblique prism, when the faces are equal in width. In Fig. 249 an oblique, hexagonal prism is shown, with x for the width of its faces. Since the perimeter of a right section would evidently equal $6 x$ we may directly lay off x six times on some perpendicular
to the edges, as that through a. The seven parallels to $a b$, drawn at distances x apart, will contain the various edges of the prism as it is rolled out on the plane; and the positions of the extremities are found by perpendiculars from their original positions. The initial position $a_{1} b_{1}$ is parallel to but at any distance from $a b$. The base edges are evidently unequal.
415. The development of an oblique prism whose faces are unequal in width.

In Fig. $250 c^{\prime} d^{\prime} h^{\prime} g^{\prime}$ is the elevation of the prism; $n p$ a plane of right section. To get $1-2-3-4$, the true shape of the right section, we require $a b h f e$, the plan of the prism.* Assuming that to have been given imagine next a vertical reference plane standing on $a b$. The right section plane $n p$ euts the edge $c^{\prime} d^{\prime}$ at n,
 which is at a distance x in front of the assumed reference plane. Nake $n 2=x$. Similarly make Fig 250. $\quad o 3=y$, and $p 4=z ;$ then $1-2-3-4$ is the right section, seen
in its true size after being revolved about the trace of the

Prolong $p n$ indefinitely, and on its extension make $1^{\prime}-2^{\prime}=1-2 ; 2^{\prime}-3^{\prime}=2-3$, etc. Parallels to $c^{\prime} d^{\prime}$ through
the points of division thus obtained will contain the edges of the developed prism, and their lengths are definitely determined by perpendiculars, as $h^{\prime} h^{\prime \prime}, f^{\prime} f^{\prime \prime}$, from the extremities of the original edges.
416. The development of an oblique cylinder, having a circular base and elliptical right section. Let a $m^{\prime} n^{\prime} k$, Fig. 251, be an oblique eylinder with eireular base. Take any plane of right section, as $a^{\prime} k^{\prime}$. Draw various elements, as those through b^{\prime}, c^{\prime}, ete., and from their lower extremities ereet perpendiculars to $a k$, as $c c_{1}$, terminating them on the are $a f_{1} k$, which represents the half base of the cylinder. On $c \epsilon^{\prime}$ make $c^{\prime} c^{\prime \prime}=c c_{1}$; on $e e^{\prime}$ take $c^{\prime} e^{\prime \prime}=c e_{1}$, and similarly obtain other points on the elements, through which the curve $a^{\prime} c^{\prime \prime} e^{\prime \prime} g^{\prime \prime} k^{\prime}$ ean be drawn, this being one-half of the eurve of right section, shown after revolution about its shorter diameter. Making $K A$ equal to the reetified semi-ellipse just obtained, lay off $A C=\operatorname{arc} a^{\prime} c^{\prime \prime} ; C E=\operatorname{are} c^{\prime \prime} e^{\prime \prime}$, ete., and through the points of division thus obtained on $K A$ draw indefinite parallels to the axis of the eylinder. These will represent the elements on the development, and are limited by the dotted lines drawn perpendicular to the original elements and through their extremities.

The area $a_{2} k_{2} N M$ is the development of one-half of the eylinder, the shaded area representing all between $a^{\prime} k^{\prime}$ and the base $a k$.

[^25]417. The devclopment of an oblique pyramid. The development will evidently consist of a series of
 triangles haring a common vertex. To ascertain the length of any edge we may carry it into or parallel to a plane of projection. Thus in Fig. 252 the edge $v b$ is earried into the vertical plane at $v b^{\prime \prime}$. Its true length is the hypothenuse of a right-angled triangle of base $a b=a b^{\prime \prime}$, and altitude r_{0}.

In Fig. 253 a 1 yramid is shown in plan and elevation. Making $o a^{\prime \prime}=v a$ we have $v^{\prime} a^{\prime \prime}$ for the actual length of edge $r^{\prime} a^{\prime}, a$ construction in strict analogy to that of Fig. 252. The plan $v b$ being parallel to the base line shows that $v^{\prime} b^{\prime}$ is the actual length of that
 edge. By carrying
$v c$ to $v c_{1}$, where it becomes parallel to V , and then projecting c_{1} to $c^{\prime \prime}$ we get $v^{\prime} c^{\prime \prime}$ for the true length of edge $v^{\prime} c^{\prime}$.

To illustrate another method make $v v_{1}=v^{\prime} o$; then $v_{1} d v_{1}$ is the real length of $v^{\prime} d^{\prime}$, shown by rabatment into H.

For the development take some point v_{2} and from it as a centre draw arcs having for radii the ascertained lengths of the edges. Thus, letting $v_{2} A$ represent the initial edge of the development, take A as a centre, $a d$ as a radius, and cut the arc of radius $v_{1} d$ at D; then $A v_{2} D$ is the development of the face $a v d, a^{\prime} v^{\prime} d^{\prime}$. With centre D and radius $d c$ obtain C on the are of radius $v^{\prime} c^{\prime \prime}$; similarly for the remaining faces, completing the development $v_{2}-A D \ldots A_{1}$.

The shaded area $v_{2}-T P \ldots T$ is the development of that part of the pyramid above the oblique plane $s^{\prime} p^{\prime}$, found by laying off, on the various edges as scen in the development, the distances along those edges from the vertex to the cutting plane; thus $v_{2} N=v^{\prime} n^{\prime}$, the real length of $v^{\prime} m^{\prime} ; v_{2} P=$ $v_{1} p_{1}$; the length of $v^{\prime} p^{\prime} ; v_{2} S=v^{\prime} s^{\prime}$, the only elevation showing actual length.
418. The development of an oblique conc. The usual method of solving this problem gives a result which, although not mathematically exact, is a sufficiently close approximation for all practical purposes. In it the cone is treated as if it were a pyramid of many sides. The length of any element is then found as in the last problem. Thus in Fig. 254 an element $v c$ is carried to $v c^{\prime \prime}$ about the vertical axis $v o$.

In Fig. 255 we have $v^{\prime} . a g$ for the elcration of the conc, and

The dihedral angles between the adjacent faces of regular solids are as follows: $70^{\circ} 31^{\prime} 44^{\prime \prime}$ for

For the tetrahedron " " octahedron the tetrahedron; 90° for the cube; $109^{\circ} 28^{\prime} 16^{\prime \prime}$ for the octahedron; $116^{\circ} 35^{\prime}$ $54^{\prime \prime}$ for the dodecahedron; and $138^{\circ} 11^{\prime} 23^{\prime \prime}$ for the icosahedron. Fis. $2 \leq 2$.

A sphere can be inseribed in each regular solicl and can also as readily be eireumscribed about it.

The relation between d, the diameter of a sphere, and e, the edge of an inseribed regular solid, is illustrated graphieally by Fig. 266, but may be otherwise expressed as follows:
$d: e:: \sqrt{3}: \sqrt{2} ;$ for the cube $\quad d: e:: \sqrt{3}: 1$
$d: e:: \sqrt{2}: 1 ; \quad "$ " dodecahedron $e=$ the greater segment of the edge of an inseribed cube when the latter has been medially divided, that is, in extreme and mean ratio.

For the icosahedron $e=$ the ehord of the arc whose tangent is d; i. e., the chord of $63^{\circ} 26^{\prime} 6^{\prime \prime}$. Reference to Figs. 256-260 and the use of a set of cardboard models which ean readily be made by means of Figs. 261-265 will enable the student to verify the

following statements as to those ordinary views whose construction would naturally preeede the solution of problems relating to these surfaces.

In all but the tetrahedron each face has an equal, opposite, parallel face, and except in the cube such faces have their angular points alternating. (See Figs. 260, 267, 268.) The tetrahedron projects as in Fig. 256, upon a plane that is parallel to either face.
The cube projects in a square upon a plane parallel to a faee, while on a plane perpendicular to a body diagonal it projects as
 a regular hexagon, with lines joining three alternate vertices with the centre.

The octahedron, whieh is praetieally two equal square pyramids with a common base, projects in a square and its diagonals, upon a plane perpendicular to either body diagonal; in a rhombus and shorter diagonal when the plane is parallel to one body diagonal and at 45° with the other

two; and (as in Fig. 267) in a regular hexagon with inscribed triangles (one dotted) when it is projected upon a plane parallel to a face.

The dodecahedron projects as in Fig. 268 whenever the plane of projection is parallel to a face.

Fig. 260 represents the icosahectron projected on a plane parallel to a face, and Fig. 269 when the projection-plane is perpendicular to an axis.
420. The Developable Helicoid. When the word helicoid is used without qualification it is understood to indicate one of the warped helicoids, such as is met with, for cxample, in screws, spiral
 staircases and screw propellers. There is, however, a developable helicoid, and to avoid confusing it with the others its characteristic property is always found in its name. As stated in Art. 346, it is generated by moving a straight line tangentially on the ordinary helix, which curve (Art. 120) cuts all the elements of a right cylinder at the same angle. Fig. 209 illustrates the completed surface pictorially; Fig. 270 shows one orthographic projection, and in Fig. 271 it is seen in process of generation by the hypothenuse of a right-angled triangle that rolls tangentially on a cylinder.

The construction just mentioned is based on the property of non-plane curves that at any point the curve and its tangent make the same angle with a given plane; if, therefore, the helix, beginning at a, crosses each element of the cylinder at an angle equal to $o b p$ in the rolling triangle, the hypothenuse of the latter will cvidently move not only tangent to the cylinder, but also to the helix.

The following important properties are also illustrated by Fig. 271:
(a) The involute* of a helix and of its horizontal projection are identical, since the point b is the extremity of both the rolling lines, $o b$ and $p b$.
(b) The length of any tangent, as $m b$, is that of the helical arc $m a$ on which it has rolled.
(c) The horizontal projection $b q$ of any tan-
 gent $b m$ cquals the rectification of an are $a q$ which is the projection of the helical are from the initial point a to the point of tangency m.

The development of one nappe of a helicoid is shown in Fig. 273. It is merely the area betreen a circle and its involute; but the radius ρ, of the base circle, equals $r \sec ^{2} \theta,{ }^{\dagger}$ in which r is

[^26]
the radius of the cylinder on which the helix originally lay, and θ is the angle at which the
 helix crosses the elements. To determine ρ draw on an elcration of the cylinder, as in Fig. 274, a line $a b$, tangent to the helix at its foremost point, as in that position its inclination θ is seen Frg- 274. in actual size; then from o, where $a b$ crosscs the extreme element, draw an indefinite line, os, par-

allel to $c d$, and cut it at m by a line $a m$ that is perpendicular to $a b$ at its intersection with the front clement ef of the cylinder; then o $m=\rho=r \sec ^{2} \theta$. For we have $o a=o n \sec \theta=r \sec \theta$; and on $(=r): o a:: o a: o m$; whence $o m=r \sec ^{2} \theta=\rho$.

The circumference of circle ρ equals $2 \pi r \sec \theta$, the actual length of the helix, as may be seen by developing the cylinder on which the latter lies. The elements which were tangent to the helix maintain the same relation to the developed helix, and appear in their true length on the development.

The student can make a model of one nappe of this surface by wrapping a sheet of Bristol board, shaped like Fig. 273, upon a cylinder of raclius r in the equation $r \sec ^{2} \theta=\rho$; or a tronapped helicoid by superposing two equal circular rings of paper, binding them on their inner edges with gummed paper, making one radial cut through both rings, and then twisting the inner edge into a helix.

the intersection of surfaces.

421. When plane-sided surfaces interscet, their outline of interpenetration is necessarily composed of straight lines; but these not being, in gencral, in one plane, form what is called a twisted or warped polygon; also called a gauche polygon.
422. If either of two intersecting surfaces is curved their common line will also be curved, except under special conditions.
423. When one of the surfaces is of uniform cross section-as a cylinder or a prism-its end view will show whether the surfaces intersect in a continuous line or in two separate onecs. In Cases a, b, c, d and g of Fig. 275, where the end view of one surface either cuts but one limiting line of the other surface or is tangent to one or both of the outlines, the intersection will be a continuous line. Two scparate curves of intersection will occur in the other possible cases, illustrated by e and f, in which the end view of one surface either crosses both the outlines of the other or clse lies wholly between them.

A cylinder will intersect a conc or another cylinder in a plane curve if its end riew is tangent to the outlines of the other surface, as in d and
 g, Fig. 275. Two cones may also intersect in a plane curve, but as the conditions to be met are not as readily illustrated they will be treated in a special problem. (See Art. 439).
424. In general, the line of intersection of two surfaces is obtained, as stated in Art. 379, by passing one or more auxiliary surfaces, usually planes, in such manner as to cut some easily constructed sections-as straight lines or circles-from each of the given surfaces; the meeting-points of the sections lying in any auxiliary surface will lie on the line sought.

The application of the principle just stated is much simplified whenever any face of cither of the surfaces is so situated that it is projected in a line. This case is amply illustrated in the problems most immediately following.

The beginner will sare much time if he will letter each projection of a point as soon as it is determined.
425. The intersection of a vertical triangular prism by a horizontal square prism; also the developments.

The vertical prism to be $1 \frac{1}{2}^{\prime \prime}$ high and to have one face parallel to V ; bases equilateral triangles of $1^{\prime \prime}$ side.

The horizontal prism to be $2^{\prime \prime}$ long, its basal edges $\frac{3}{8}^{\prime \prime}$, and its faces inclined 45° to H ; its rear edges to be parallel to and $\frac{1^{\prime \prime}}{}{ }^{\prime \prime}$ from the rear face of the horizontal prism.

The elerations of the axes to bisect each other.

Draw ei horizontal and $1^{\prime \prime}$ long for the plan of the rear face of the vertical prism. Complete the equilateral trianglc egi and project to levels ${1 \frac{1}{2}^{\prime \prime}}^{\prime}$ apart, obtaining $e^{\prime} f^{\prime}$, $g^{\prime} h^{\prime}, i^{\prime} j^{\prime}$, on the elevation.

Construct an end view $g^{\prime \prime} i^{\prime \prime} j^{\prime \prime} h^{\prime \prime}$, using $t^{\prime \prime} j^{\prime \prime}$ to represent the reference line $e t$, transferred.

The end view of the horizontal prism is the square $a^{\prime \prime} b^{\prime \prime} c^{\prime \prime} d^{\prime \prime}$, having its diagonal horizontal and upper and lower bases of the other prism, and with its corner from $i^{\prime \prime} j^{\prime \prime}$. The plan and front elevation of the horizontal rived from the end view as in preceding constructions.

Since the lines $e g$ and $g i$ are the plans of vertical faces their intersection by the edges a, b, c and d of the horin, m, l, p, q, r-and project to the elcuations of the same edge a a meets the other prism at 0 and k, which project o^{\prime} and k^{\prime}. Similarly for the remaining points.

The right half of the horizontal prism, $o^{\prime} a^{\prime} c^{\prime} q^{\prime}$, is developed at $r_{2} b_{2} b_{3} r_{3}$ after the method of Art. 412.
426. The intersection of two prisms, one vertieal, the other horizontal, each having an edge exterior to the other. The condition made will, as already stated (Art. 423), make the result a single warped polygon.
 stands with its broader faces at some convenient angle ewg to V . From it construct the front and side elevations, taking a reference

Let the horizontal prism be triangular (isosceles section) one face inclined 45° to H ; another 30° to H ; the rear edge to be

Begin by locating $g^{\prime \prime}$ one-fifth inch from the right edge, draw $f^{\prime \prime} g^{\prime \prime}$ at 45°, making it of sufficient length to have $f^{\prime \prime}$ exterior to the other prism; then $f^{\prime \prime} e^{\prime \prime}$ at 30° to H , terminated at $e^{\prime \prime}$ by an arc of centre $g^{\prime \prime}$ and radius $g^{\prime \prime} f^{\prime \prime}$; finally $e^{\prime \prime} g^{\prime \prime}$. The edges e^{\prime}, f^{\prime} and g^{\prime} of the front elevation are then projected from $e^{\prime \prime}, f^{\prime \prime}$ and $g^{\prime \prime}$.

The rear edge g in the plan meets the face $a d$ at s, which projects to s^{\prime} on the elevation of the edge through g^{\prime}.

Moving forward from s, the next edge reached, of either solid, is a, of the vertical prism. To aseertain the height at which it meets the other prism we look to the end view, finding $q^{\prime \prime}$ for the entrance and $t^{\prime \prime}$ for the exit. Being on the way up from $g^{\prime \prime}$ to $e^{\prime \prime}$ we use $q^{\prime \prime}$, reserving $t^{\prime \prime}$ until we deal .with the face $g^{\prime \prime} f^{\prime \prime}$. Projecting $q^{\prime \prime}$ over to q^{\prime} on edge $a a^{\prime}$ draw $q^{\prime} s^{\prime}$, dotted, since it is on a rear face.

Returning to a and moving toward b we next reach the edge e, whose intersection p with $a b$ is then projected to edge e^{\prime} at p^{\prime} and joined with q^{\prime}.

For the next edge, b, we obtain o^{\prime} from the side clevation, projecting from the intersection of $f^{\prime \prime} e^{\prime \prime}$ by the edge $b^{\prime \prime}$.

Moving from b toward w, projecting to the front elevation from either the plan or the side elevation according as we are dealing with a horizontal edge or a vertical one, we complete the intersection.

The development of the
 vertical prism is shown in Fig. 278. As already fully described, $d d l_{1}=$ perimeter $a b c d$ in Fig. 277; $a Q=a^{\prime} q^{\prime} ; b O=b^{\prime} o^{\prime} ; \quad a x=a x$ (of Fig. 277); $x S=$ vertical distance of s^{\prime} from $a^{\prime} \epsilon^{\prime}$, etc.

Although not required in shop work the draughtsman will find it an interesting and valuable
 exercise to draw and shade either solid after the removal of the other; also to draw the common solid. The former is illustrated by Fig. 279; the latter by Fig. 280.
427. The interscction of two prisms, one vertical, the other oblique but with edges parallel to V .

Let $a b c d \ldots a^{\prime} r^{\prime}$ (Fig. 281) be the plan and elevation of the vertical prism.
Let the oblique prism be (a) inclined 30° to H ; (b) have its rear edge $\frac{3}{10}{ }^{\prime \prime}$ back of the axis of the vertical prism; (c) have its faces inclined 60° and 30° respectively to V ; (d) have a rectangular base $1 \frac{1}{6}^{\prime \prime} \times \frac{3^{\prime \prime}}{4}$. These conditions are fulfilled as follows:

Through some point o^{\prime} of the edge $e^{\prime} o^{\prime}$ draw an indefinite line, $o^{\prime} f^{\prime}$, at 30° to H , for the elevation of the rear edge, and $f f$, also indefinite in length at first but $\frac{3}{10}{ }^{\prime \prime}$ back of s, for the plan.
 s, and, as in Art. 397 (b), construct an auxiliary elevation on $M N$, transferring it so
that it is seen as a perpendicular to $o^{\prime} f^{\prime}$, thus obtaining the same view of the prisms as would be had if looking in the direction of the arrow. To construct this make $o^{\prime \prime} f^{\prime \prime}$ equal to $\frac{3^{\prime \prime}}{10}$; draw $f^{\prime \prime} i^{\prime \prime}$ at 60° to $M N$, and on it complete a rectangle of the given dimensions, after which lay off the points of the pentagonal prism at the same distances from $M N$ in both figures. Project back, in the direction of the arrow, from $f^{\prime \prime}, g^{\prime \prime}, h^{\prime \prime}$ and $i^{\prime \prime}$ to the front elevation,
and draw $g^{\prime} i^{\prime}$ and the opposite base each perpendicular to $o^{\prime} f^{\prime}$ and at equal distances each side of o^{\prime}. For the intersection we get any point n^{\prime} on an oblique edge, as g^{\prime}, by noting and projecting from
n where the plan $g g$ meets the face $c d$. For a vertical edge as $c^{\prime} m^{\prime}$ look to the auxiliary elevation of the same edge, as $c^{\prime \prime}$, getting $l^{\prime \prime}$ and $m^{\prime \prime}$ which then project back to l^{\prime} and m^{\prime}.

The derelopment need not again be deseribed in detail but is left for the student to construct, with the reminder that for the actual distance of any corner of the intersection from an edge of either prism he must look to that projection which shows the base of that prism in its true size: thus the distance of l^{\prime} from the edge h^{\prime} is $h^{\prime \prime} l^{\prime \prime}$.
428. The intersection of pyramidal surfaces by lines and planes. The principle on which the intersection of pyramidal surfaces by plane-sided or single curved surfaces would be obtained is illustrated by Figs. 282 and 283.
(a) In Fig. 282 the line $a b, a^{\prime} b^{\prime}$, is supposed to intersect the given pyramid. To ascertain its entrance and exit points we regard the elevation $a^{\prime} b^{\prime}$ as representing a plane perpendicular to V and cutting the edges of the pyramid. Project m^{\prime}, where one edge is cut, to m, on the plan of the same edge. Obtaining n and o similarly we have $m n o$ as the plan of the section made by plane $a^{\prime} b^{\prime}$. The plan $a b$ meets $m n o$ at s and t, the plans of the points sought, which then project back to $a^{\prime} b^{\prime}$ at s^{\prime} and t^{\prime} for the elevations.

As $a b, a^{\prime} b^{\prime}$, might be an edge of a pyramid or prism, or an element of a conical, cylindrical or warped surface, the method illustrated is of general appli-
 cability.
(b) In Fig. 283 the auxiliary planes are taken vertical, instead of perpendicular to V as in the last ease.

The plane $M N$ cuts a pyramid. To find where any edge $v^{\prime} o^{\prime}$ pierces the plane $M N$ pass an auxiliary vertical plane $x z$ through the edge, and note x and z, where it cuts the limits of $M N$; project these to x^{\prime} and z^{\prime} on the elevations of the same limits; draw $x^{\prime} z^{\prime}$, which is the elevation of the line of intersection of the original and auxiliary planes, and note s^{\prime}, where it crosses $v^{\prime} 0^{\prime}$. Project s^{\prime} back to s on the plan of $v^{\prime} 0^{\prime}$.

If a side elevation has been drawn, in which the plane in question is seen as a line $M^{\prime \prime} N^{\prime \prime}$, the height of the points of intersection can be obtained therefrom directly.
429. The intersection of two quadrangular pyramids. In Fig. 284 the pyramid $v . e f g h$ is vertical; altitude $v^{\prime} z^{\prime}$; base efgh, having its longer edges inelined 30° to V .

The oblique pyramid. Let $s^{\prime} y^{\prime}$, the axis of the oblique pyramid, be parallel to V but inclined θ° to H , and be at some small distance (approximately $v k$) in front of the axis of the vertical pyramid; then $s c$ will contain the plan of the axis, and also of the diagonally opposite edges $s a$ and $s c$, if we make-as we may-the additional requirement that $a^{\prime} c^{\prime}$, the diagonal of the base, shall lie in the same vertical plane with the axis.

Instead of taking a separate end view of the oblique pyramid we may rotate its base on the diagonal $a^{\prime} c^{\prime}$ so that its foremost corner appears at $b^{\prime \prime}$ and the rear corner at $d^{\prime \prime}$, whence b^{\prime} and d^{\prime} are derived by perpendiculars $b^{\prime \prime} b^{\prime}$ and $d^{\prime \prime} d^{\prime}$, and then the edges $s^{\prime} b^{\prime}$ and $s^{\prime} d^{\prime}$. For the plans b and d use $s c$ as the trace of the usual reference plane, and offsets equal to $b^{\prime} b^{\prime \prime}$ and $d^{\prime} d^{\prime \prime}$, as previously.

The angle $a^{\prime} c^{\prime} d^{\prime}$, or ϕ, is the inclination of the shorter edges of the base to V .
The intersection. Without going into a detailed construction for each point of the outline of interpenetration it may be stated that each method of the preceding article is illustrated in this
problem, and that there is no special reason why either should have a preference in any ease except where by properly choosing between them we may avoid the intersection of two lines at a very acute angle-a kind of intersection which is always undesirable.

as the trace of an auxiliary vertical plane containing the edge $v g, v^{\prime} g^{\prime}$. Thinking this edge may possibly meet the face $s b a$ we proceed to test it on that assumption.

The plane $v g$ crosses $s a$ at l, and $s b$ at p; these project to l^{\prime} on $s^{\prime} a^{\prime}$ and to p^{\prime} on $s^{\prime} b^{\prime}$; then $p^{\prime} l^{\prime}$ meets $v^{\prime} g^{\prime}$ at q^{\prime}, which is a real instead of an imaginary intersection since it lies between the actual limits of the face considered. From q^{\prime} a vertical to $v g$ gives q.

The order of obtaining and connecting the points. The start may be with any edge, but once under way the progress should be uniform, and each point joined with the preceding as soon as obtained. Two points are connected only when both lie on a single face of each pyramid.

Supposing that q^{\prime} was the point first found, a look at the plan would show that the edge $s a$ of the oblique pyramid would be reached before $v h$ on the other, and the next auxiliary plane would therefore be passed through $s a$ to find $u u^{\prime}$; then would come $v h$ and $s d$. Running down from m on the face sdc we find the positions such that inspection will not avail, and the only thing to do is to try, at random, either a plane through $v h$ or one through $s e$; and so on for the remaining points.

The developments. No figure is furnished for these, as nearly all that the student requires for obtaining them has been set forth in Art. 396, Case 6. The only additional points to which attention need be called are the cases where the intersection falls on a face instead of an cdge. For example, in developing the vertical pyramid we would find the development of j^{\prime} by drawing $v^{\prime} j^{\prime}$, prolonging it to o^{\prime}, and projecting the latter to o, when $f x o$ would be the real distance to lay off from f on the development of the base; then laying off the real length of $v^{\prime} j^{\prime}$ on $v^{\prime} o^{\prime}$ as seen in the development we would have the point sought. Similarly, for $t t^{\prime}$, draw $v x$; make $v_{2} x_{2}=v x$, and $v_{2} v_{1}=$ altitude $v^{\prime} z^{\prime}$; then $v_{1} x_{2}$ is the true length of $v x$ (in space); also, making $v_{2} t_{2}=v t$ and drawing $t_{2} t_{1}$, we find $v_{1} t_{1}$ to lay off in its proper place on the development of the same face $v f g$.
430. An ellow or T-joint, the intersection of two equal cylinders whose axes mect. Taking up curved surfaces the simplest case of intersection that can occur is the one under consideration, and which is illustrated by Fig. 285.

The conditions are those stated in Art. 423 for a plane intersection, which is seen in $a^{\prime} b^{\prime}$ and is actually an ellipse.

The vertical piece appears in plan as the circle $m q$. To lay off the equidistant elements on earh eylinder it is only necessary to divide the half plan of one into equal ares and project the points of division to the elevation in order to get the full elements, and where the latter meet $a^{\prime} b^{\prime}$ to draw the dotted elements on the other.

The development of the horizontal cylinder is shown in the line-tinted figure. The curved boundary, which represents the developed ellipse, is in
 reality a sinusoid. (Refer to Art. 171).

The relation of the developed elements to their originals, fully described in Art. 120, is so evident as to require no further remark, except to call attention again to the fact that their distances apart, $e_{1} f_{1}, f_{1} g_{1}$, etc., equal the rectification of the small ares of the plan.
431. To turn a right angle with a pipe by
 a forr-picee elbow. This problem would
arise in carrying the blast pipe of a furnace around a bend. Except as to the number of picees it differs but slightly from the last problem. Instead of one joint or curve of intersection there would be three, one less than the number of pieces in the pipe. (Fig. 286).

Let oqs show the size of the cylinders employed, and be at the same time the plan of the vertical piece $o^{\prime} s^{\prime} n^{\prime} a^{\prime}$. Until we know where $a^{\prime} n^{\prime}$ will lie we have to draw $o^{\prime} a^{\prime}$ and $s^{\prime} n^{\prime}$ until they meet the elements from S^{\prime} and T^{\prime}, and get the joint $m M^{\prime}$ as for a two-piece ellow. On $m M M^{\prime}$ produced take some point v^{\prime}, use it as a centre for an are $t^{\prime} x y t^{\prime \prime}$ tangent to the extreme elements; divide this arc, between the tangent points, into as many equal parts as there are to be joints in the turn; then tangents at x and y-the intermediate points of division-will determine the outer limits of the joints at a^{\prime}, b^{\prime} and J. Draw $a^{\prime} v^{\prime}$, finding n^{\prime} by its intersection with $s s^{\prime}$; then $n^{\prime} l^{\prime}$ parallel to $a^{\prime} b^{\prime}$, and similarly for the next piece.

The developments of the smaller pieces would be equal, as also of the larger. One only is shown, laid out on the developed right section on $v^{\prime} x$. The lettering makes the figure self-interpreting.
432. The intersection of two cylinders, when each is partially exterior to the other. The given condition makes it evident, by Art. 423, that a continuous non-plane curve will result.

Let one cylinder be vertical, $2^{\prime \prime}$ in diameter and $2^{\prime \prime}$ high. This is shown in half plan in $h k l$, and in front and side elevations between horizontals $2^{\prime \prime}$ apart.

Let the second cylinder be horizontal; located midway between the upper and lower levels of the other eylinder; its diameter $\frac{4}{5}^{\prime \prime}$. On the side elevation draw a cirele $a^{\prime \prime} b^{\prime \prime}$ $c^{\prime \prime} d^{\prime \prime}$ of $\frac{4^{\prime \prime}}{}{ }^{\prime \prime}$ diameter, locating its centre midway between $k^{\prime \prime} l^{\prime \prime}$ and $k_{1} N^{\prime}$, and in such position that $a^{\prime \prime}$ shall be exterior to $k^{\prime \prime} k_{1}$. The elevation of the horizontal cylinder is then projected from its end view, and is shown in part without construction lines.
The curve of intersection is obtained by selceting particular elements of cither cylinder and noting where they meet the other surface.

The foremost element of the vertical cylinder is $k \ldots k^{\prime} n^{\prime} m^{\prime}$. Its side clevation, $k^{\prime \prime} k_{1}$, meets the circle at $n^{\prime \prime}$ and $m^{\prime \prime}$, which give the levels of n^{\prime} and m^{\prime} respectively.

On the horizontal eylinder the highest and lowest elements are contral on the plan and meet the vertical cylinder at c, which projects down to the elements d^{\prime} and b^{\prime}.

The front and rear elements, c and a, would be central on the elevation. The vertical line drawn from the intersection of element c with the are $h k l$ gives the right-hand point of the eurve of intersection, at the level of α^{\prime}.

Any element as $g x$ may be taken at randon, and its elevation found in either of the following ways: (a) Transfer $g z$, the distance of the element from $M N$, to $s^{\prime \prime} x$ on the side elevation, and draw $x g^{\prime \prime}$ and $g^{\prime \prime} y^{\prime}$, to which last (prolonged) project g at g^{\prime}; or (b) prolong $g x$ to meet a
semi-circle on $a c$ at $g^{\prime \prime \prime}$; make $a^{\prime} y^{\prime}=x g^{\prime \prime \prime}$ and draw $y^{\prime} g^{\prime}$. The same ordinate $x g^{\prime \prime \prime}$, if laid off bclow a, would obviously give the other element which has the same plan $g x$, and to which g projects to give another point of the desired curve.
433. The intersection of a vertical cone and horizontal cylinder. Let the cone have an altitude, $w w^{\prime}$, of $4^{\prime \prime}$; diameter of base, $3^{\prime \prime}$. (As the cylinder is entirely in front of the axis of the cone, only onehalf of the latter is represented.)

For the cylinder take a diameter of $\frac{4}{5}^{\prime \prime}$; length $3 \frac{7^{\prime \prime}}{10}$; axis parallel to $\mathrm{V}, \frac{5}{8}{ }^{\prime \prime}$ above the base of the cone, and $\frac{2}{5}$ from the foremost element. Draw $n s$ parallel to $p^{\prime} r^{\prime}$ and $\frac{2^{\prime}}{}{ }^{\prime \prime}$ from it; also $g^{\prime} m^{\prime}$ horizontal and $\frac{5^{\prime}}{}{ }^{\prime \prime}$ from the base; their intersection s is the centre of the circle $a^{\prime \prime} d^{\prime} c^{\prime \prime} m^{\prime}$, of $\frac{4}{5}^{\prime \prime}$ diameter, which bears to the element $p^{\prime} r^{\prime}$ the relation assigned for the cylinder to the foremost element; said circle and $p^{\prime} w w^{\prime}$ are thus, practically, a side elevation of cylinder and cone, superposed upon the ordinary view.

The dimensions chosen were purposely such as to make onc element of the cone tangent to the cylinder, that the curve of intersection might cross itself and give a mathematical "double point."

The width $d b$, of the plan of the cylinder, equals $m^{\prime} d^{\prime}$. The plan of the axis (as also of the highest and lowest elements, u^{\prime} and a^{\prime}) will be at a distance
 $s g^{\prime}$ from u. Any element as $x^{\prime} y^{\prime} h^{\prime}$ is shown in plan parallel to $p q$, and at a distance from it equal cither to $h^{\prime} y^{\prime}$ if on the rear or to $h^{\prime} x^{\prime}$ if on the front.

The element through v, on which f^{\prime} falls, is not drawn separately from $b f$ in plan, since $v f^{\prime}$ and $m^{\prime} g^{\prime}$ are so nearly equal to each other; but f must not be considered as on the foremost element of the cylinder, although it is apparently so in the plan.

For the intersection pass auxiliary horizontal planes through both surfaces; each will cut from the cone a circle, whose intersection with cylinder-clements in the same plane will give points sought.

A horizontal plane through the element a^{\prime} would be represented by $a^{\prime} o^{\prime}$, and would cut a circle of radius $o^{\prime \prime} z^{\prime}$ from the cone. In plan such circle would cut the element a at point 1 , and also at a point (not numbered) symmetrical to it with respect to $w Q$. Similarly, the horizontal plane through the element $x^{\prime} h^{\prime}$ cuts a circle of radius $l^{\prime} h^{\prime}$ from the cone; in plan such circle would meet the elements x and y in two more points (5 and 3) of the curve.

As the curve is symmetrical with respect to $w Q w^{\prime}$, the construction lines are given for one-half only, leaving the other to illustrate shaded effects. The small shaded portion of the elevation of the cylinder is not limited by the curve along which it would meet the cone, but by a random curve which just clears it of the right-hand element of the cone.
434. To find the diameter and inclination of a cylindrical pipe that will make an elbow with a conical
pipe on a given plane section of the latter. Let $v a b$ be a vertical cone, and $c d$ the clliptical plane section on which the cylindrical piece is to fit. The diameter of the desired cylinder will equal the shorter diameter of the ellipse $c d$. To find this bisect $c d$ at e; draw $f h$ horizontally
 through e, and on it as a diameter draw the semicircumference $f g h$; the ordinate $e g$ is the half width of the conc, measured on a perpendicular to the paper at e, and is therefore the radius of the desired cylinder.

In Fig. 290, the base $N G$ equals twice Frg. 290. $g e$ of Fig. 289. At first indefinite perpendiculars are crected at N and G, on one of which a point C is taken as a centre for an are of radius equal to $c d$ in Fig 289. The angle ϕ being thus determined is next laid off in Fig. 289 at c, and $c d N^{\prime \prime} G^{\prime \prime}$ made the exact duplicate of $C D N G$, completing the solution.

The developments are obtained as in Arts. 120 and 191.
cresumfers
435. To determine the conical piece which
 will properly connect two unequal cylinders of circular-section, whose axes are parallel, meeting then-cither (a) in circles or (b) in ellipses; the planes of the joints being parallel.
(a) When the joints arc circles. To determine the conical frustum behc prolong the clements $e b$ and $h c$ to v; develop the conc $v \ldots e h$ as in Art. 418, and on each element as seen in the development lay off the real distance from v to the upper base $b c$. Thus the clement whose plan is $v_{1} k$ is of actual length $v k_{1}$ and cuts the upper base at a distance $v n$ from the vertex, which distance is thercfore laid on $v k_{1}$ wherever the latter appears on the development.
(b) When the joints are ellipses. Let the elliptical joints $n o$ and $q r$ be the bases of the conical piece qnor. To get the development complete the cone by prolonging $q n$ and or to w; prolong $q r$ and drop a perpendicular to it from w; find the minor axis of the ellipse $q r$ as in the first part of Art. 434 and having constructed the ellipse procced as in Art. 418, since in Fig. 255 the are $a b c \ldots g$ is mercly a special case of an ellipse.
436. The projections and patterns of a bath-tub. Before taking up more dillicult problems in the intersection of ẹurved surfaces one of the most ordinary applications of Graphics is introduced, partly by way of illustrating the fact that the engineer and arelitect cnjoy no monopoly of practical projections.

In Fig. 292 the height of the main portion of the tub is shown at $a^{\prime} d^{\prime}$. Let it be required that the head end of the tub be a portion of a vertical right cone whose base angle $c^{\prime} b^{\prime} u^{\prime}$ equals the flare of the sides, such cone to terminate on a curve whose vertical projection is $o^{\prime} n^{\prime} z^{\prime} u^{\prime}$. Draw
two lines, $b^{\prime} l^{\prime}$ and $c^{\prime} i^{\prime}$, at first indefinite in length. and at a clistance $a^{\prime} d^{\prime}$ apart. Take $a^{\prime} d^{\prime}$ vertical, and regard it not only as the projection of the elements of tangency of the flat sides with the conical end, but also as the elevation of part of the axis, prolonging it to represent the latter. Use r, the plan of the axis, as the centre for a semicircle of radius $v c$, whose diameter $e d$ is the width of the bottom of the tul. Project c to c^{\prime}; make angle $v^{\prime} c^{\prime} d$, equal to the predetermined flare of the sides; prolong $v^{\prime} c^{\prime}$ to b^{\prime} and o^{\prime}; project b^{\prime} to b on $v c$ prolonged and draw are $a b \mathrm{~m}$ with rarlius $b x$, obtaining $a \mathrm{~m}$ for the width of the plan of the top.

The plan of one-half the curve $o^{\prime} n^{\prime} z^{\prime} a^{\prime}$ is shown at onzm and is thus found: Assume any clement $v^{\prime} x^{\prime} y^{\prime}$; prolong it to z^{\prime}; obtain the plan $r x y$ and project z^{\prime} upon it at z. Similarly for n and as many intermediate points as it might scem desirable to obtain.

Assuming that the foot of the tub is
 composed of an oblique cone whose section, his, with the bottom is equal to ecd, and whose base angle is $l^{\prime} i^{\prime} k^{\prime}$, we project i to i^{\prime}, draw $i^{\prime} k^{\prime}$ at the given angle to the base, project k^{\prime} to k, and through the latter draw the semicircle $r k q$ with radius $b x$, obtaining the plan of the upper base.

Joining the tangent points r and s, h and q, we have $r s$ and $h q$ as the elements of tangeney of sides with encl. Their elcvations coincide in $h^{\prime} l^{\prime}$, which meets $k^{\prime} i^{\prime}$ at $v^{\prime \prime}$, whose plan is v_{1} on $h q$.

Fig. 293.

The development. Fig. 293 is the derelopment of one-half of the tub. $E M$ equals $b^{\prime} c^{\prime}$; VO equals $x^{\prime} o^{\prime}$; $V^{\prime} Z$ equals $r^{\prime} z^{\prime \prime}$, the true length of $r^{\prime} z^{\prime}$, obtainert, as in previous eonstructions, by carrying z to z_{1}, thence to level of z^{\prime}. Similarly at the other end. (Reference Articles 191, 40s, 418.)
437. The intersection of a vertical cylinder and an oblique cone, their axes intersecting.

Let $M B d$ and $M^{\prime} R^{\prime} P^{\prime} N^{\prime}$ be the projections of the cylinder; $v^{\prime} \cdot a^{\prime} b^{\prime}$ and $v . a n b m$ those of the conc. The axes meet o^{\prime} at an angle θ which is arbitrary.

The ellipse $a n b m$ is supposed to be constructed by one of the various methods employed when the axes are known; and in this case we get the length of $m n$ from $a^{\prime} b^{\prime}$ and its position from n^{\prime}, while $a b$ is vertically above $a^{\prime} b^{\prime}$.

폳․ 29チ.

(a) Solution by auxiliary vertical planes. Any vertical plane vls will cut elements from the cylinder at e and l; also, from the cone, elements which meet the base at s and t. Project s and t to s^{\prime} and t^{\prime}, join the latter with the vertex v^{\prime} and note l^{\prime} and e^{\prime} (just below d^{\prime}) where they cross the vertical projection of the elements from l and e; these will be points in the desired curve of intersection.

By assuming a sufficient number of vertical planes through v the entire curve can be determined.
(b) Solution by auxiliary spheres. If two surfaces of revolution have a common axis they will intersect each other in a circle whose plane is perpendicular to that axis." This property can be advantageously applied in problems of intersection.

With o^{\prime}-the intersection of the axes-as a centre, we may draw circles with random radii $o^{\prime} f^{\prime}, o^{\prime} i$, and let these represent spheres. The sphere $f^{\prime} g^{\prime} w$ intersects the cone in the circle $f^{\prime} g^{\prime}$; the cylinder in the circle $h^{\prime} k^{\prime}$. These circles intersect each other at x in a common chord whose extremities are points of the curves sought. They are both projected in the point x.

A second pair of circular sections, lying on the same auxiliary sphere, are seen at $p q$ and $r w$, their intersection z being another point in the solution. The point y results from taking the smaller sphere.
438. Intersection of a cylinder and cone, their axes not lying in the same plane.

In Fig. 295 let the cylinder be vertical and the cone oblique, the axis of the latter being parallel to V and inclined θ° to H , and also lying at a distance x back of the axis of the cylinder.

The auxiliary surfaces employed may preferably be vertical planes through the vertex of the cone, since each will then cut elements from both cylinder and cone. Thus, $v f e$ is the h.t. of a vertical plane which cuts $e r, e^{\prime} v^{\prime}$ from the cone, and the rertical element through f from the cylinder; these meet in vertical projection at f^{\prime}, one point of the desired curve. The plan of the intersection obviously coincides with that of the cylinder.

[^27]439. Conical elbow; right cones meeting at a given angle and having an elliptical joint. This is one
of the cases mentioned in Art. 423 as not admitting of illustration in the same way as when dealing with surfaces of uniform cross section; but a plane intersection is nevertheless secured as with cylinders by making the extreme elements of the cones intersect.

Let $v x$ in Fig. 296 be the axis of one of the cones. If $x y z$ is the required angle between the axes bisect it by the line $y m$, and draw the joint $c d$ parallel to such bisector. The right cone which is to meet $a b c d$ on $c d$ must be capable of being cut in a section equal to $c d$ by a plane making an angle θ with its axis, and must obviously have the same base angle as the original cone;
 since, however, the upper portion $v d c$ of the given cone fulfills

conditions we may employ it instead of a new cone, rotating it about an axis $p t$ which is perpendicular to the plane of the ellipse $d c$ and passes through its centre. The point o, in which the axis $v x$ meets the plane $d c$, will then appear at s, by making $o p=p s ; s v^{\prime}$, drawn parallel to $y z$, will be the new direction of $v o$; and an arc from centre d with radius $c v$ will give v^{\prime}, which is then joined with d and c to complete the construction.

If the length of the major axis of the elliptical joint had been assigned, as ef for example, that length would have first been laid off from some point e on the extreme element and parallel to $y m$, then from f a parallel to $v e$, giving g on $v c$; then $g h$ parallel and equal to $e f$, gives the joint in its proper place.
440. Right cones intersecting in a non-plane curce; axes meeting at an oblique angle. Let one cone, $v^{\prime} . a^{\prime} b^{\prime}$, (Fig. 297) be vertical; the other, oblique, its axis meeting $v^{\prime} o^{\prime}$ at an angle θ.

The plane $a^{\prime} b^{\prime}$ of the base of the vertical cone cuts the other cone in an ellipse whose longer axis is $e^{\prime} f^{\prime}$. As in Art. 434 determine $g^{\prime} h^{\prime}$, the semi-minor axis of this ellipse. Project e^{\prime}, g^{\prime} and f^{\prime} up to e, g and f; make
$g h_{1}$ and $g h_{2}$ each equal to $g^{\prime} h^{\prime}$; then on ef and $h_{1} h_{2}$ as axes construct the ellipse $e h_{1} j_{l} l_{2}$ as in Art. 131. Tangents from v_{1} to the ellipse complete the plan of the oblique cone.
(a) The curve of intersection, found by auxiliary planes. In order that each auxiliary plane shall contain an element (or elements) of each cone, it must contain both vertices and therefore the line $r^{\prime} r^{\prime \prime}$, which joins them; hence its trace on the plane $e^{\prime} a^{\prime} b^{\prime}$ must pass through the trace, $t^{\prime} t$, of such line on that plane. Take $t x$ as the horizontal trace of one of these auxiliary planes. It euts clements starting at i and l on the base of the oblique cone. One of the elements cut from the other cone is $v p$, which in vertical projection ($v^{\prime} p^{\prime}$) crosses the elevations of the other elements at q^{\prime} and r^{\prime}, two points of the curves sought. Since the extreme elements of the cones are parallel to V . we will have c^{\prime} and d^{\prime}-the intersections of their elevations-for two more points of the curve. Having
 found other points by repeating the same process the curve $c^{\prime} q^{\prime} r d^{\prime}$ is drawn through them, and the cones may then be developed as in Art. 191.
(b) Method by auxiliary spheres. Since the axes intersect we may use auxiliary spheres as in Case (b) of Art. 437. Thus, with o^{\prime}-the interseetion of the axes-as a centre, take any radius $o^{\prime} k$ and regard are $k y z$ as representing a portion of a sphere which cuts the cones in $k s$ and $y z$. These meet at v, one point of the curve of intersection $c^{\prime} q^{\prime} d^{\prime}$.
441. Intersecting cones, bases in the same plane but axes not. Let $r . k b f g$ and $e . s Q h j$ be the plans of the cones; $v .^{\prime} p^{\prime} d^{\prime}$ and $e .^{\prime} Q^{\prime} c^{\prime}$ their elevations.

As argued in Case (a) of the last problem, the auxiliary planes must contain the line joining the vertices; their H -traces would therefore, in the general case, pass through the trace of that line upon the plane of the bases; but, in the figure, both vertices having been taken at the same height above the bases, the line which joins them must be horizontal, hence parallel to the H -traces of the auxiliaries: that is, $X Y, S T, Q R$, etc., are parallel to $v e$.

It happens that the trace $M N$ of the foremost auxiliary plane is tangent to both bases, hence contains but one element of each cone and determines but one point of the desired curre. These elements, ae and $b v$, meet at n, while their elevations intersect at n^{\prime}.

Each of the other planes, except $X Y$, being seeant to both bases, will cut two elements from each cone, their mutual intersections giving four points of the curve of interpenetration. Thus, in plane $O P$, the element $O e$ meets $v k$ in q and $v d$ in x, while element $h e$ gives l and m on the same elements.

The plane $X Y$ being tangent to one base while secant to the other gives but two points on the curve sought.

Order of connecting the points. Starting with any plane, as $M N$, we may trace around the bases either to the right or left. Choosing the former we find, in the next plane, the point h to the right of a on one base, and d similarly situated with respect to b on the other; therefore m, on $h e$ and $d v$, is the next point to connect with n. Elements $o e$ and $f v$ give the next point, then $u e$ and $g v$ locate s, after which those from j and w give the last before a return movement on the base of the v-cone. As nothing new would result from retracing the are $g f d$ we continue to the left from w, although compelled to retrace on the other base, since planes beyond j would not cut the v-cone. The element $u e$ is therefore taken again, and its intersection noted with an element whose projection happens to be so nearly coincident with $v x$ that the latter is used.

Continuing along ares $o c h$ and $i \hbar b$ we reach the plane $M N$ again, the curves $i l x$ and $q n m$ crossing each other then at n-the point lying in that plane. Such point is called a double point, and occurs on non-plane curves of intersection at whatever point of two intersecting surfaces they are found to have a common tangent plane.

Tracing to the left from a and to the right from b the elements $O e$ and $d v$ are reached, in the plane $O P$. Their intersection x is joined with n on one side and with the intersection of $S e$ and $g v$ on the other. Soon the tangent plane $X Y$ is again reached and a return movement necessitated, during which the are $X S Q O A$ is retraced, while on the other base the counter-clockwise motion is continued to the initial point b, completing the curve.

Visibility. The visible part of the intersection in either view must obviously be the intersection of those portions of the surfaces which would be visible were they separate, but similarly situated with respeet to II and V .

In plan the point n lies on visible elements, and either are passing through it is then visible till it passes (becomes tangent to, in projection) an element of extreme contour as at m or t, when it runs from the upper to the under side of the surface and is concealed from view.

The point w would be risible on the v-cone lout for the fact that it is on the under side of the e-cone.

A similar method of inspection will determine the visible portions of the vertical projection of the curve, which will not be identical with those of the plan. In fact, a curre wholly visible in one view might be entirely concealed in the other.
442. The intersection of a vertical cylinder and an oblique cone, their axes in the same plane. If in Art. 440 the vertex v^{\prime} were removed to infinity the v-cone would become a vertical cylinder; the line $v^{\prime} v^{\prime \prime}$ would become a vertical line through $v^{\prime \prime}$; t would be vertically above $v^{\prime \prime}$; but the method of solving would be unchanged.
443. In general, any method of solving a problem relating to a cone will apply with equal facility to a cylinder, since one is but a special case of the other. The line, so frequently used, that passes through the vertex of a cone in the one problem is, in the other, a parallel to the axis of the cylinder. Planes containing both vertices of cones become planes parallel to both axes of cylinders.

In view of the interchangeability of these surfaces it is unnecessary to illustrate by a scparate figure all the possible variations of problems relating to them.
444. Intersection of two cones, two pyramids, or of a cone and a pyramid, when neither the bases nor axes lie in one plane.

One method of solving this problem has been illustrated in Art. 429, where the intersection was
 found by using auxiliary planes that were either vertical or perpendicular to V ; we may as easily, however, employ the method of the last problem, viz., by taking auxiliary planes so as to contain both vertices. This will be illustrated for the problems announced, by taking a cone. and pyramid; and, for convenience, we will locate the surfaces so that one of them will be vertical, and the base of the other will be perpendicular to V , since the problem can always be reduced to this form.

Let the cone $v^{\prime} \cdot a^{\prime} b^{\prime}, v . c d B$, (Fig. 299) be vertical, and the pyramid $o^{\prime} \cdot r^{\prime}$ $q^{\prime} p^{\prime}$, o.r $q p$, inclined.

We will assume that the projections of the pyramid have been found as in preceding problems, from assigned data, using $o o_{2}, o^{\prime} p^{\prime}$, (taken perpendicular to the base $r^{\prime} q^{\prime}$) as the reference line.

Join the vertices by the line $v^{\prime} o^{\prime}$, $v o$, and prolong it to get its traces, $s s^{\prime}$ and $t t^{\prime}$, upon the planes of the bases. All auxiliary planes containing the line $v o, v^{\prime} o^{\prime}$, must intersect the planes of the two bases in lines passing through such traces.

Prolong $r^{\prime} q^{\prime}$ to meet the plane $a^{\prime} b^{\prime}$ at X. Project up from X, getting $y z$ for the plan of the intersection of the two bases.

We may assume any number of auxiliary planes, some at random, but others more definitely, as those through edges of the pyramid or tangent to the cone. Taking first one through an edge, as or, we have trz for its trace on the pyramid's base, then $z s$ for its trace on H . The elements $c v$ and $d v$ which lie in this plane meet the edge or at e and f, giving two points of the curve. These project to $o^{\prime} r^{\prime}$ at e^{\prime} and f^{\prime}.

The plane $s y$, tangent to the cone along the element $u v$, has the trace $y t$ on the base of the pyramid, and cuts lines $j o$ and $k 0$ from its faces. These meet $v u$ at two more points of the curve, their elevations being found by projecting j to j^{\prime} and k to k^{\prime}, drawing $o^{\prime} j^{\prime}$ and $o^{\prime} k^{\prime}$, and noting their intersections with $v^{\prime} u^{\prime}$. To check the accuracy of this construction for either point, as l, draw $v v_{1}$ perpendicular to $v u$ and equal to $v^{\prime} u^{\prime}$, join v_{1} with u, and we have in $v v_{1} u$ the rabatment of a half section of the cone, taken through the element $v u$ and the axis; then $l l_{1}$, parallel to $v v_{1}$, will be the height of l^{\prime} above the base $a^{\prime} b^{\prime}$.

With one exception, any auxiliary plane between $s y$ and $s z$ will give four points of the intersection. The exception is the plane $s Y$, containing the edge $o q$, and which, on account of happening to be vertical, requires the following special construction if the solution is made wholly on the plan: Rabat the plane into \mathbf{H}; the elements it contains will then appear at $A v_{2}$ and $B v_{2}$, while the edge $o q$ will be seen in $o_{1} q_{1}$ (by making $o o_{1}=o^{\prime} O$, and $q q_{1}=q^{\prime} Q$); elements and edge then meet at J_{1} and N_{1} which counter-revolve to J and N. We might, however, get elevations first, as J^{\prime}, by the intersection of element $A^{\prime} v^{\prime}$ with edge $o^{\prime} q^{\prime}$; then J from J^{\prime}.

In the interest of clearness several lines are omitted, as of certain auxiliary planes, hidden portions of the ellipses, and the curves in which srq (the rear face) cuts the cone. The student should supply these when drawing to a larger scale.
BRIDGE POST CONNECTIONS. - GEARING. - SPRINGS. - BOLTS, SCREWS AND NUTS.
445. Detail of a Bridge.-Upper-Chord Post-Connection.-A bridge or roof truss is an assemblage of pieces of iron or wood, so connected that the entire combination acts like a single beam. Figs. 300 and 301 are what are called "skeleton diagrams" of bridge trusses, each piece or "member" of the truss being represented by a single line. $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are the trusses proper, the

former being for an overhead track and the latter for a roadway running through the bridge. In each case the upper part-called the upper chord $-\left(A D, B^{\prime} C^{\prime \prime}\right)$ sustains compression, and is made of "built beams," formed by riveting together various plates and lengths of structural iron in such manner as to form one practically continuous column.

The lower chords ($B C, A^{\prime} D^{\prime}$) sustain tension, and are made of bars of high tensile strength.
The members that connect the chords are called either ties or struts according as the strain in them is tensile or compressive. Collectively they form the web of the truss.

In the form of truss illustrated - which is only one of many which have commended themselves to the profession-the vertical picces or "posts," $B e, f g$, etc., sustain compression, and are therefore "built" columns. They divide the trapezoid into parts called panels, which has given the name panel system to this largely-employed arrangement of bridge members.

All the diagonal members in both figures, excepting $A^{\prime} B^{\prime}$ and $C^{\prime} D^{\prime}$, are tension bars or rods. $B b$ and $C s$ are struts whose sole office is to keep the posts $A b$ and $D s$ vertical; said posts then conveying to the masonry whatever weights are transmitted through the truss to A and D respectively.

Fig. 302 is a perspective view of the connection at A between the post $A b$, the upper chord $A D$, and the four diagonal bars that are projected in $A B$. The working drawings required for such connection are shown in the three views on the opposite page. Three analogous views would be requircd for the connection at the foot of the same post.

When-as in the case from which our example is taken - there are two railroad tracks overhead,
 the members of the middle truss will usually have different proportions from those in the outside trusses, and a separate set of three views has therefore to be made for each of its post connections, so that the smallest number of shop drawings for one such bridgeafter making all allowance for the symmetry of the structure with reference to the central plane $M N$-would consist of twenty such groups of three as are illustrated by Fig. 304.

The upper projections (Fig. 304) are obviously a front and a side clevation. The lower figure may preferably be regarded as a plan of the object inverted, since that conception is somewhat more natural than that of the post in its normal position, while the draughtsman lies on his back and gazes up at it from beneath.
Fig. 303 shows the inverted plan on a somewhat smaller scale, and, although presented mainly to illustrate the contrast between views with shade lines and without, contains one or two serviceable dimensions that are omitted on the other plate.
446. General description. Referring to the wood cut as well as the orthographic projections, we find the upper chord to be composed of a long cover-plate, $18^{\prime \prime} \times \frac{7^{\prime \prime}}{16}$, riveted to the top angles of two vertical channel bars set back to back; each channel being $15^{\prime \prime}$ high and weighing 200 pounds per yard. The cross section of the upper chord is shown in solid black, with just enough space intended between plate and channels to show that they are not all in one piece.

Perpendicular to the vertical faces of the channels and through holes cut therein runs a cylinder called a "pin," 4 " in diameter and $21^{\frac{3}{4}}$ " "between shoulders" (as marked on the plan), that is, between the planes where the diancter is reduced and a thread turned, on which connection can be made with the corresponding post in the next truss.

Four diagonal bars are sustained by the pin, the latter passing through holes, called "eyes," in the bars. Two of the bar heads are between the channels.

Two plates are inserted between each of the outside bars and the nearest channel, not only to prevent the bar from touching the angle, as at h, but also to relice the metal nearest the pin from some of the strain. The longer plate $m n F E$ is next the channel. The other, nmop, has a kind of hub cast on it which rounds up to the bar head, as shown in the side elevation.

The vertical post is made up of an I-beam and two channels, as shown by the black sections on the plan.

 parts will enhance the appearance of the drawing very materially, bnt the previous lining should be, obviously, in best waterproof ink. Centre, dimension, and extension lines should be in continnous red lines, unless for blue printing, in which case all lines will be black.

Between the upper chord and the top of the post is a three-quarter-inch plate, seen best on the plans at iflt. It is nicked out $4^{\prime \prime}$, near the nuts K, so as to clear the two middle bars S whieh come between the channels.

A $5^{\prime \prime} \times 3^{\prime \prime}$ angle-iron runs from outside to outside of channels, and is held by rivets and by the bolts marked H. A shorter piece of the same kind is fastened by bolts K to the plate, and by rivets to the web of the I-beam.
447. Hints as to drawing the bridge post connection. Draw the main centre lines first; then the plan and side elevations simultaneously, as the horizontal centre line of the plan represents the same vertical reference-plane as the vertical centre line of the side elevation, and one spacing of the dividers may be made to do double work.

The solid sections should be drawn first of all; then the pins, bars, and cap plates of the post in the order named. The parts already drawn should next be represented on the front elevation by

projecting up from the plan and across from the side view. The filler plates, $m p$ and $m F$, with their rivets, come next on the front elevation, from which they project to the side.

Next in order draw the angle irons on the front elevation, with their bolts, H^{\prime} and K^{\prime}, and project them both across and down. Finally put in all remaining rivets, and dimension the views.

The angle whose bolts are marked H terminates exactly on the edges of the channels, as shown in the wood-cut, rather than as indicated in the side elevation.
448. Structural Iron. In Figs. 305 and 306 the forms of iron more generally used in bridge and house construction are shown in cross section, and may advantageously be drawn on an enlarged scale.

Treated as described in Art. 75 they may be worked up with brush or pen like Fig. 136.

Fis- ЗO6. $15^{\prime \prime}$ I-BEAM.

449. Toothed Gearing. When two shafts are to be rotated and a constant velocity ratio maintained between them, it is customary to fix upon them toothed wheels whose teeth are so proportioned that by their sliding action upon each other they produce the motion desired. It is not within the intended scope of this work to go at length into the theory of gearing, for which the student is referred to such specialized treatises as those of Grant, Robinson, MacCord, Weisbach and Willis; but the draughtsman will find it to his adrantage to be familiar with the following rapid method of drawing the outlines of the teeth of a spur wheel, in which a remarkably close approximation is made by circular arcs to the theoretical involute outlines now so much employed.
450. CN (in Fig. 307) is the radius of the pitch circle, that is, the circle which passes through the middle of the working part of the tooth.

The working outlines outside the pitch circle are called faces ($f y, h i$), while within they are designated as flanks. The flanks are rounded off into the root circle by small arcs called filcts.

The limits of the teeth on the addendum circle, as a, g, h, m, are called their points.

On the pitch circle the distance $b i$, between corresponding points of consecutive teeth, is called the circular pitch (usually denoted by P).

Knowing the pitch and the number (N) of teeth, the radius of the pitch circle will equal $P \times N \div 2 \pi$.

As one inch pitch and twenty tecth are taken as data for the illustration, we have $C N=3^{\prime \prime} .18+$.

The other proportions are also expressed in terms of the pitch, a frequently-used system therefor being indicated on the figure.

If i is a point through which a tooth outline is to pass, draw $C i$, and on it as a diameter describe the semi-circumference Csi. An are from centre i, with a radius of one-fourth $C i$, will give the centre s of the outline $h i j$.

Draw the "circle of centres" through s, from centre C. Then with $s i$ in the dividers, and from centre f find q, which use in turn for are $g f e$, and so continue.

The wilth of rim, $v w$, is often made, by a "shop" rule, equal to three-fourths the pitch. Reuleaux gives for it the following formula: $v w=0.4 \mathrm{P}+.12$.

Diametral pitch is very frequently used
 instead of circular pitch, and is simply the number of teeth per inch of pitch-circle diameter. 451. Helical Springs. Draw first (Fig. 308) a central helix acfm..T, as follows: Divide aa,-
which is the pitch, or rise in one turn-into any number of equal parts, and the semi-circumference $A E M$ into half as many equal divisions; then each point marked with a capital on the half plan gives two elevations (denoted by the same letter small) by a process which is self-evident.

If the spring is circular in cross-section draw a series of circles having centres on the helix, and whose diameters equal that of the spring; then the outlines of the spring will be curves that are tangent to the circles. If the spring be. small the curvature of the helix may be. ignored, and a series of parallel straight lines employed instead, drawn tangent to circular arcs as in Fig. 309.

The upper half of the figure gives the method of construction, while the lower shows the spring in section, and surrounding a solid cylindrical core.
452. Springs of rectangular cross-section. Fig. 311 shows a spring of this description, formed by moving the rectangle $a b c d$ helically, each point describing a helix which can be constructed as described in the last article.

When any considerable number of turns of the same helix has to be drawn it will save time if the draughtsman will shape a strip of pear-wood into a templet, i. e., a piece whose outline conforms to a line to be drawn or an edge to be cut, using it then as a curved ruler to guide his pen. This is the preferable mcthod for all large work.

453. Square-threaded screws. If instead of spirally twisting a rectangular bar the same kind of surface be cut upon a cylinder of wood or metal, we slall have a square-threaded screw. This is illustrated by the upper part of Fig. 310, and its construction is self-
 evident after what has preceded. On a larger scale the curvature of the helices would have to be indicated.

The upper view is an elevation of a small double-threaded square screw, generated by winding two equal rectangles simultaneously around the axis.

The central figure is an elevation of a single-threaded screw. The lower figure is a sectional view of the nut for the singlethreader screw, and evidently presents a surface identical with that of the back half of the screw which fits it.
454. Triangular-threaded screws. - United States Standard. - The proportions devised by Mr. William

Sellers of Philadelphia have been so gencrally adopted as to be known as the United States Standard. They are given in the table on the next page.

Fig. 312 shows a section of the Sellers screw. It is blunt on the thread, and also at the root. The part op B which is removed from the point may be regarded as filled in at Nst. $A B$ being the pitch (P), the widths $o p, s t$, are each one-eighth of P.

With N equal to the number of threads per inch, and D the outside diameter of the screw or bolt, the valuc of l-the diameter at the root-may be obtained from the formula $d=D-(1.299 \div N)$.
Other proportions are as follows: The pitch is equal to $0.24 \sqrt{ } \overline{D+0.625}-0.175$. The depth of thread equals $0.65 P$. For bolts and nuts, whether hexagonal or square, the "width across flats," or shortest distance between parallel faccs, equals $1.5 D$, plus one-eighth of an inch for rough or unfinished surfaces, or plus one-sixteenth of an inch for "finished," i. e., machined or filed to smoothness.

The depth of nut equals the diameter of the bolt, for "rough" work. Tables should be consulted for the proportions of finished pieces.

Fig. 313 is a drawing, to reduced scale, of a finished $\frac{7_{8}^{\prime \prime}}{8}$ bolt. The elevations show a bevel or chamfer, such as is usually given to a finished bolt or nut. On the plans this is indicated by the circles of diameter $p q$, the latter usually a little more than threefourths of the diameter ad.

To draw the lines resulting from chamfering procced thus: On a view showing "width across flats," as that of the nut, draw the chamfer lines $z u$, oi, at 30° Fis. 314 . to the top, and cutting off the desired amount. Draw circles on the plans, with diametcr equal to u o. Project p and q to P and Q,
 and draw $P x$ and $Q y$ at 30° to the top. Make $N k$ on the nut equal to
 $n y$ on the head. On the latter draw a parallel to $P Q$, and as far from it as $o u$ is from $v i$. The arcs limiting the plane faces have their centres found by "trial and error," three points of each curve being known.

When drawn to a small scale screws may be represented by either of the conventional methods illustrated by

Figs. 314, 315 and 316.

DIMENSIONS OF BOLTS AND NUTS, UNITED STATES STANDARD (SELLERS SYSTEM)

Proportions of Bolt					Dimensions of Nuts Rough and Finished						Dimensions of Bolt Heads Rough and Finished					
Outside Diam.	At Root of Thread		$\mathrm{N}=$ Number of Threads per inch.	Width (f) of Flat.				$\overbrace{\text { Corners }}^{\text {Across }}$ R						$\overbrace{\text { Corners }}^{\text {Across }}$ R		
D	Diam.	Area			R	F			R	F	R	F			R	F
$\frac{1}{4}$. 185	. 026	20	. 0062	$\frac{1}{2}$	$\frac{7}{16}$	$\frac{37}{64}$	$\frac{7}{10}$	$\frac{1}{4}$	$\frac{3}{16}$	$\frac{1}{2}$	$\frac{7}{16}$	$\frac{37}{61}$	$\frac{7}{10}$	$\frac{1}{4}$	$\frac{3}{16}$
$\frac{5}{16}$. 240	. 045	18	. 0074	$\frac{19}{32}$	$\frac{17}{32}$	$\frac{11}{16}$	$\frac{5}{6}$	$\frac{5}{16}$	$\frac{1}{4}$	$\frac{19}{32}$	$\frac{17}{32}$	$\frac{11}{16}$	$\frac{5}{6}$	$\frac{19}{64}$	$\frac{1}{4}$
$\frac{3}{8}$. 294	. 067	16	. 0078	$\frac{11}{16}$	$\frac{5}{8}$	$\frac{51}{64}$	$\frac{63}{64}$	$\frac{3}{8}$	$\frac{5}{16}$	$\frac{11}{16}$	$\frac{5}{8}$	$\frac{51}{64}$	$\frac{63}{61}$	$\frac{11}{32}$	$\frac{5}{16}$
$\frac{7}{16}$. 344	. 092	14	. 0089	$\frac{25}{32}$	$\frac{23}{32}$	$\frac{9}{10}$	$1{ }^{\frac{7}{64}}$	$\frac{7}{16}$	$\frac{3}{8}$	$\frac{25}{32}$	$\begin{array}{r} 23 \\ \frac{23}{32} \\ \hline \end{array}$	$\frac{9}{10}$	$1 \frac{7}{64}$	$\frac{25}{64}$	$\frac{3}{8}$
$\frac{1}{2}$. 400	. 125	13	. 0096	$\frac{7}{8}$	$\frac{13}{16}$	1	$1 \frac{15}{64}$	$\frac{1}{2}$	$\frac{7}{18}$	$\frac{7}{8}$	$\frac{13}{16}$	1	$1{ }^{151}$	$\frac{7}{16}$	$\frac{7}{18}$
$\frac{9}{18}$. 454	. 161	12	. 0104	$\frac{31}{32}$	$\frac{29}{32}$	$1 \frac{1}{8}$	$1{ }^{\frac{23}{4}}$	$\frac{9}{16}$	$\frac{1}{2}$	$\frac{31}{32}$	$\begin{array}{r} \frac{29}{32} \\ \hline \end{array}$	$1 \frac{1}{8}$	$1{ }^{\frac{23}{61}}$	$\frac{31}{64}$	$\frac{1}{2}$
$\frac{5}{8}$. 507	. 201	11	. 0113	$1 \frac{1}{16}$	1	$1 \frac{7}{32}$	$1 \frac{1}{2}$	$\frac{5}{8}$	$\frac{9}{16}$	$1 \frac{1}{18}$	1	$1 \frac{7}{32}$	$1 \frac{1}{2}$	$\frac{17}{32}$	$\frac{9}{16}$
$\frac{3}{4}$. 620	. 301	10	. 0125	1 $\frac{1}{4}$	$1 \frac{3}{16}$	$1 \frac{7}{16}$	$1 \frac{49}{64}$	$\frac{3}{4}$	$\frac{11}{16}$	$1 \frac{1}{4}$	$1{ }_{16}^{3}$	$1 \frac{7}{16}$	$1{ }^{49}$	$\frac{5}{8}$	$\frac{11}{16}$
$\frac{7}{8}$. 731	. 419	9	. 0138	$1 \frac{7}{16}$	$1 \frac{3}{8}$	$1 \frac{21}{22}$	$2 \frac{1}{32}$	$\frac{7}{8}$	$\frac{13}{16}$	$1{ }_{16}^{7}$	$1 \frac{3}{8}$	$1{ }^{21}$	$2 \frac{1}{32}$	$\begin{aligned} & \frac{23}{32} \\ & \frac{23}{3} \end{aligned}$	$\frac{13}{16}$
1	. 837	. 55	8	. 0156	$1 \frac{5}{8}$	$1 \frac{9}{16}$	$1 \frac{7}{8}$	$2 \frac{19}{64}$	1	$\frac{15}{16}$	18	$1 \frac{9}{16}$	$1 \frac{7}{8}$	$2 \frac{19}{69}$	$\frac{13}{16}$	$\frac{15}{16}$
$1 \frac{1}{8}$. 940	. 693	7	. 0178	$1 \frac{13}{16}$	$1 \frac{3}{4}$	$2 \frac{3}{32}$	$2 \frac{9}{16}$	$1 \frac{1}{8}$	$1 \frac{1}{16}$	11_{18}^{13}	$1 \frac{3}{4}$	$2 \frac{3}{32}$	$2 \frac{9}{16}$	$\frac{29}{32}$	$1 \frac{1}{18}$
$1 \frac{1}{4}$	1.065	. 89	7	. 0178	2	$1 \frac{15}{16}$	$2 \frac{5}{16}$	$2{ }_{64}^{53}$	$1 \frac{1}{4}$	$1 \frac{3}{16}$	2	$1 \frac{15}{16}$	$2 \frac{5}{16}$	2_{84}^{53}	1	$1{ }_{16}^{3}$
$1 \frac{3}{8}$	1.160	1.056	6	. 0208	$2 \frac{3}{16}$	$2 \frac{1}{8}$	$2 \frac{17}{32}$	$3 \frac{3}{32}$	1 $\frac{3}{8}$	$1 \frac{5}{16}$	$2 \frac{3}{16}$	$2 \frac{1}{8}$	$2 \frac{17}{32}$	$33_{3} \frac{3}{2}$	$1 \frac{3}{32}$	$1 \frac{5}{16}$
$11 \frac{1}{2}$	1.284	1.294	6	. 0208	$2 \frac{3}{8}$	$2 \frac{5}{16}$	$2 \frac{3}{4}$	$3 \frac{23}{64}$	$1 \frac{1}{2}$	$1 \frac{7}{16}$	$2 \frac{3}{8}$	$2 \frac{5}{16}$	$2 \frac{3}{4}$	361	$1 \frac{3}{16}$	$1 \frac{7}{16}$
$1 \frac{5}{8}$	1.389	1.515	$5 \frac{1}{2}$. 0227	$2 \frac{9}{16}$	$2 \frac{1}{2}$	$2 \frac{31}{32}$	$3 \frac{5}{8}$	$1 \frac{5}{8}$	$1{ }_{16}$	$2 \frac{9}{16}$	$2 \frac{1}{2}$	$2 \frac{31}{32}$	$3 \frac{5}{8}$	1_{32}^{9}	$1 \frac{9}{16}$
$1{ }^{\frac{3}{4}}$	1.491	1.746	5	. 0250	$2 \frac{3}{4}$	$2 \frac{11}{16}$	$3 \frac{3}{18}$	$3 \frac{57}{84}$	$1 \frac{3}{4}$	$1{ }_{16}^{11}$	$2 \frac{3}{4}$	$2 \frac{11}{16}$	$3 \frac{3}{16}$	3_{61}^{57}	$1 \frac{3}{8}$	1_{16}^{11}
$1{ }^{\frac{7}{8}}$	1.616	2.051	5	. 0250	$2 \frac{15}{16}$	$2 \frac{7}{8}$	$3 \frac{13}{32}$	$4 \frac{5}{32}$	$1 \frac{7}{8}$	$1 \frac{13}{16}$	$2 \frac{15}{18}$	$2 \frac{7}{8}$	$3 \frac{13}{32}$	$4 \frac{5}{32}$	$1{ }_{3}^{15}$	$1 \frac{13}{16}$
2	1.712	3.301	$4 \frac{1}{2}$. 0277	$3 \frac{1}{8}$	$3 \frac{1}{16}$	$3 \frac{5}{8}$	$4 \frac{27}{64}$	2	$1 \frac{15}{16}$	$3 \frac{1}{8}$	$3 \frac{1}{16}$	$3 \frac{5}{8}$	4_{81}^{27}	$1 \frac{9}{16}$	$1 \frac{15}{16}$
$2 \frac{1}{4}$	1.962	3.023	$4 \frac{1}{2}$. 0277	$3 \frac{1}{2}$	$3 \frac{7}{16}$	$4 \frac{1}{16}$	$4 \frac{61}{64}$	$2 \frac{1}{4}$	$2 \frac{3}{16}$	$3 \frac{1}{2}$	$3 \frac{7}{16}$	$4 \frac{1}{16}$	461	$1 \frac{3}{4}$	$2 \frac{3}{16}$
$2 \frac{1}{2}$	2.176	3.718	4	. 0312	$3 \frac{7}{8}$	$3 \frac{13}{16}$	$4 \frac{1}{2}$	$5 \frac{31}{64}$	$2 \frac{1}{2}$	$2 \frac{7}{16}$	$3 \frac{7}{8}$	3 $\frac{13}{16}$	$4 \frac{1}{2}$	5_{61}^{31}	$1{ }_{16}^{15}$	$2 \frac{7}{16}$
$2 \frac{3}{4}$	2.426	4.622	4	. 0312	$4 \frac{1}{4}$	$4 \frac{3}{16}$	$4 \frac{29}{32}$	6	$2 \frac{3}{4}$	$2 \frac{11}{16}$	$4 \frac{1}{4}$	$4 \frac{3}{16}$	$4 \frac{29}{32}$	$\therefore 6$	$2 \frac{1}{8}$	$2 \frac{11}{16}$
3	2.629	5.428	$3 \frac{1}{2}$. 0357	$4 \frac{5}{8}$	$4 \frac{9}{16}$	$5 \frac{3}{8}$	$6 \frac{17}{32}$	3	$2 \frac{15}{18}$	$4 \frac{5}{8}$	$4 \frac{8}{16}$	$5 \frac{3}{8}$	6_{32}^{17}	$2 \frac{5}{18}$	$2 \frac{15}{16}$
$3 \frac{1}{4}$	2.879	6.509	$3 \frac{1}{2}$. 0357	5	$4 \frac{15}{16}$	$5 \frac{13}{16}$	$7 \frac{1}{16}$	$3 \frac{1}{4}$	$3 \frac{3}{16}$	5	$4 \frac{15}{16}$	$5 \frac{13}{13}$	$7 \frac{1}{16}$	$2 \frac{1}{2}$	$3 \frac{3}{16}$
$3 \frac{1}{2}$	3.100	7.547	$3{ }^{\frac{1}{4}}$. 0384	$5 \frac{3}{8}$	$5 \frac{5}{16}$	$6 \frac{7}{64}$	$7 \frac{39}{64}$	$3 \frac{1}{2}$	$3 \frac{\pi}{16}$	$5 \frac{3}{8}$	$5 \frac{5}{16}$	$6 \frac{7}{64}$	$7{ }_{64}^{39}$	$2 \frac{11}{16}$	$3 \frac{7}{16}$
$3{ }_{4}^{3}$	3.317	8.641	3	. 0413	$5 \frac{3}{4}$	$5 \frac{11}{16}$	$6 \frac{21}{32}$	$8 \frac{1}{8}$	$3 \frac{3}{4}$	$3 \frac{13}{16}$	$5 \frac{3}{4}$	$5 \frac{11}{16}$	$6 \frac{21}{32}$	$8 \frac{1}{8}$	$2 \frac{7}{8}$	$3 \frac{13}{16}$
4	3.567	9.993	3	. 0413	$6 \frac{1}{8}$	$6 \frac{1}{16}$	$7{ }_{32}{ }^{3}$	$8 \frac{41}{64}$	4	$3 \frac{15}{16}$	$6 \frac{1}{8}$	$6 \frac{1}{18}$	$7{ }^{3}$	$8{ }_{64}^{41}$	$3 \frac{1}{16}$	$3 \frac{15}{16}$
$4 \frac{1}{4}$	3.798	11.329	$2 \frac{7}{8}$. 0435	$6 \frac{1}{2}$	$6 \frac{7}{16}$	$7 \frac{9}{16}$	$9 \frac{3}{16}$	$4 \frac{1}{4}$	$4 \frac{3}{16}$	$6 \frac{1}{2}$	$6 \frac{7}{16}$	$7 \frac{9}{16}$	$9 \frac{3}{16}$	$3 \frac{1}{4}$	$4 \frac{3}{16}$
$4 \frac{1}{2}$	4.028	12.742	$2 \frac{3}{4}$. 0454	$6 \frac{7}{8}$	$6 \frac{13}{18}$	$7 \frac{31}{32}$	$9 \frac{3}{4}$	$4 \frac{1}{2}$	$4 \frac{7}{16}$	$6 \frac{7}{8}$	$6 \frac{13}{16}$	$7 \frac{31}{32}$	$9 \frac{3}{4}$	$3 \frac{7}{16}$	$4 \frac{7}{16}$
$4 \frac{3}{4}$	4.256	14.226	$2{ }_{8}^{5}$. 0476	$7 \frac{1}{4}$	$7 \frac{3}{16}$	$8 \frac{13}{23}$	$10 \frac{1}{4}$	$4 \frac{3}{4}$	$4 \frac{11}{16}$	$7 \frac{1}{4}$	$7 \frac{3}{16}$	$8 \frac{13}{32}$	$10 \frac{1}{4}$	$3 \frac{5}{8}$	$4 \frac{11}{16}$
5	4.480	15.763	$2 \frac{1}{2}$. 0500	$7 \frac{5}{8}$	$7 \frac{9}{16}$	8_{32}^{27}	10_{81}^{49}	5	$4 \frac{15}{10}$	$7 \frac{5}{8}$	$7 \frac{9}{16}$	$8 \frac{27}{32}$	$10 \frac{49}{61}$	$3{ }_{16}^{13}$	$4 \frac{15}{16}$
$5 \frac{1}{4}$	4.730	17.570	$2 \frac{1}{2}$. 0500	8	$7 \frac{15}{16}$	9_{32}^{9}	11_{64}^{23}	$5 \frac{1}{4}$	$5{ }_{16}^{3}$	8	$7 \frac{15}{16}$	$9 \frac{9}{32}$	11_{64}^{23}	4	$5 \frac{3}{16}$
$5 \frac{1}{2}$	4.953	19.267	2_{8}^{3}	. 0526	$8 \frac{3}{8}$	$8 \frac{5}{18}$	9_{32}^{23}	$11 \frac{7}{8}$	$5 \frac{1}{2}$	$5 \frac{7}{16}$	$8 \frac{3}{8}$	$8 \frac{5}{16}$	$9{ }_{32}^{23}$	$11 \frac{7}{8}$	$4 \frac{3}{16}$	$5 \frac{7}{16}$
$5 \frac{3}{4}$	5.203	21.261	$2 \frac{3}{8}$. 0526	$8 \frac{3}{4}$	$8 \frac{11}{16}$	$10{ }^{5}$	$12 \frac{3}{8}$	$5{ }_{4}^{3}$	$5 \frac{11}{16}$	$8 \frac{3}{4}$	$8 \frac{11}{16}$	$10 \frac{5}{32}$	$12 \frac{8}{8}$	$4 \frac{3}{8}$	$5 \frac{11}{16}$
6	5.243	23.097	$2 \frac{1}{4}$. 0555	$9 \frac{1}{8}$	$9 \frac{1}{16}$	10_{32}^{19}	$12{ }^{\frac{15}{16}}$	6	$5 \frac{15}{16}$	9 $\frac{1}{8}$	$9 \frac{1}{16}$	$10 \frac{19}{22}$	$12{ }^{15}$	$4{ }^{\frac{9}{16}}$	$5 \frac{15}{16}$

$\boldsymbol{C H A P T} \boldsymbol{A} \boldsymbol{R} \boldsymbol{X}$.

AXONOMETRIC (INCLUDING ISOMETRIC) PROJECTION.-ONE-PLANE DESCRIPTIVE GEOMETRY.
621. When but one plane of projection is employed there are but two applications of orthographic projection having special names. These are Axonometric (known also as Axometric) Projection, and One-Plane Descriptive Geometry or Horizontal Projection.

AXONOMETRIC PROJECTION. - ISOMETRIC PROJECTION.

622. Axonometric Projection, including its much-employed special form of Isometric Projection, is applicable to the representation of the parts or "details" of machinery, bridges or other constructions in which the main lines are in directions that are mutually perpendicular to each other.

An axonometric drawing has a pictorial effect that is obtained with much less work than is involved in the construction of a true perspective, yet which answers almost as well for the conveying of a clear idea of what the object is; while it may also be made to serve the additional purpose of a working drawing, when occasion requires.
623. Fundamental Problem.-To obtain the orthographic projection of three mutually perpendicular lines or axes, and the scale of real to projected lengths. Let $a b, b c$ and $b d$ (Fig. 394) be the projections of three lines forming a solid right angle at b. Let the line $a b$ be inclined at some given angle θ to the plane of projection. Locate a vertical plane parallel to $a b$ and project the latter upon it at $a^{\prime} b^{\prime}$, at θ° to the horizontal. Since the plane of the other two axes is perpendicular to $a b, a^{\prime} b^{\prime}$, its traces will be $P^{\prime} d^{\prime} R$. (Art. 303).

In order to find either c or d we need to know the inclination of the axis having such point for its extremity. Supposing β given
 for $c b$, draw $b^{\prime} C$ at β° to $G L$; project C to c_{1} and draw arc $c_{1} c$, centre b, obtaining c.

Join a with c; then $a c$ is the trace of the plane of the axes $b a$ and $b c$, and being perpendicular to the third axis we may draw the latter as the line $e b d$, making 90° with $a c$.

Carry d to d_{1} about b; project d_{1} to D and join the latter with b^{\prime}. Then $D b^{\prime}$ is the true length, and $b^{\prime} D L$ (or ϕ) the inclination, of the third axis, $b d$.

Lay off $a^{\prime} n^{\prime}, D s^{\prime}$ and $C t^{\prime}$, each one inch. Their projected lengths on the horizontal are respectively $a^{\prime} n, D s$ and $C t$. The latter are then the lengths, representative of inches, for all lines parallel to $a b, b c$ and $b d$ respectively.
624. To make an axonometric projection of a one-inch cube, to the scale just obtained.

Although not absolutely necessary, it is customary to take one axis vertical.
Taking the $a b$-axis vertical, the cube in Fig. 394 fulfills the conditions. For $B A$ equals $a^{\prime} n$; $B D^{\prime \prime}$ equals $D s$, and $B C^{\prime \prime}$ equals $C t$, while the angles at B equal those at b.

The light being taken in the usual direction, i.e., parallel to the body-diagonal of the cube ($C^{\prime \prime} R$), the shade lines indicated are those which separate illumined from unillumined surfaces, and are those which could, therefore, cast shadows.
625. The axonomctric projection of a vertical pyramid, of three-fourths-inch altitude and inch-square base, to the same scale as the cube. The pyramid in Fig. 394 meets the requirements, $x w y z$ having been made equal to $C^{\prime \prime} B D^{\prime \prime} X$; while the altitude $m M$, rising from the intersection of the diagonals of the base, equals three-fourths $a^{\prime} n$, the inch-representative for the vertical axis.
626. To draw curves in axonometric projection, obtain first the projections of their inscribed or circumscribed polygons, or of a sufficient number of secant lines; then sketch the curve through the points on these new lines which correspond to the points common to the curves and lines in the original figure. This will be illustrated fully in treating isometric projection.
627. Isometric Projection.-Isometric Drawing. When three mutually perpendicular axes are equally inclined to the plane of projection, they will obviously make equal angles (120°) with each other in projection. This relation led to the name "isometric," implying equal measure, and also obviates the necessity for making a separate scale for each axis.

The advantages of this method seem to have been first brought out by Prof. Farish of England, who presented a paper upon it in 1820 before the Cambridge Philosophical Society.
628. In practice the isometric scale is never used, but, as all lines parallel to the axes are equally foreshortened, it is customary to lay off their given lengths directly upon the axes or their parallels, the result showing relative position and proportion of parts just as correctly as a true projection, but being then called an isometric drawing, to distinguish it from the other. It would, obviously, be the projection of a considerably larger object than that from which the dimensions were taken.

Lines parallel to the axes are called isometric lines.
Any plane parallel to, or containing two isometric axes, is called an isometric plane.

天ig- 395.

629. To make an isometric drawing of a cube of three-quarter-inch enges. Starting with the usual isometric centre, O, (Fig. 395) draw one axis vertical, and on it lay off $O A$ equal to three-fourths of an inch. $O C$ and $O B$ are then drawn with the 30°-triangle as shown, made equal in length to $O A$, and the figure completed by parallels to the lines already drawn.

One body-diagonal of the cube is perpendicular to the paper at 0 .
630. To draw circles and other curves isometrically, employ auxiliary tangents and secants, obtain their isometric representations, and sketch the curves through the proper points.
In Fig. 396 we have an isometric cube, and at $M O^{\prime} P^{\prime} N$ the square, which-by rotation on $M N$ and by an elongation of $M P^{\prime}$-becomes transformed into $M O P N$. The circle of centre S^{\prime} then
becomes the ellipse of centre S, whose points are obtained by means of the four tangencies d^{\prime}, F, E and G, and by making $g n$ equal to $g n^{\prime}, h m$ equal to $h^{\prime} m^{\prime}$, etc.
631. The isometric circle may be divided into parts corresponding to certain arcs on the original, either (1) by drawing radii from S^{\prime} to $M N$, as those through $b^{\prime}, c^{\prime}, d^{\prime}$, (which may be equidistant or not, at pleasure) and getting their isometric representatives, which will intercept ares, as $b d^{\prime}, d^{\prime} e$, which are the isometric views of $b^{\prime} d^{\prime}, d^{\prime} e^{\prime}$; or (2) by drawing a semicircle $x i y$ on the major axis as a diameter, letting fall perpendiculars to $x y$ from various points, and noting the arcs as $1-2,2-3$, that are included between them and which correspond to the arcs $i j, j k$, originally assumed.
632. Shade lines on isometric drawings. While not universally adhered to, the conventional direction for the rays, in isometric shadow construction, is that of the body-diagonal $C R$ of the cube (Fig. 395). This makes in projection an angle of 30° with the horizontal. Its projection on an isometrically-horizontal plane -as that of the top-is a horizontal line $C B$; while its projection $C A$, on the isometric representation of a vertical plane, is inclined 60° to the horizontal.
633. To illustrate the priuciples just stated Fig. 397 is given, in which all the lines are isometric, with the
 exception of $D z$ and its parallels, and $S T$. The drawing of non-isometric lines will be treated in
 the next article, but assuming the objects as given whose shadows we are about to construct, we may start with any line, as $D z$.

The ray $D d$ is at 30°. Its projection $d_{1} d$ is a horizontal through the plan of D. The ray and its projection meet at d. As the shadow begins where the line meets the plane, we have $z d$ for the shadow of $D z$. This gives the direction for the shadow of any line parallel to $D z$, hence for $y v$, which, however, soon runs into the shadow of $B C$. As b is the intersection of the ray $B b$ with its projection $b_{1} b$, it is the shadow of B, and $b_{1} b$ that of $b_{1} B$. Then $b v$ is parallel to $B C$, the line casting the shadow being parallel to the plane receiving it.

In accordance with the principle last stated, de is equal and parallel to $D E$, and ef to $E F$. At f the shadow turns to g, as the ray $f F$, run back, cuts $M G$ at f^{\prime}, and $f^{\prime} G$ casts the $f g$-shadow.

Then $g h$ equals $G H$, and $h h_{1}$ is the shadow of $H h$. The projection $j m$ catches the ray $M m$ at m. Then $m f$, equal to $M f^{\prime}$, completes the construction.

The timber, projecting from the vertical plane $P Q R$, illustrates the 60°-angle earlier mentioned. $K k^{\prime}$ being perpendicular to the vertical plane, its shadow $K l$ is at 60° to the horizontal, and $K l k$

Fis. 3e8.
 is the plane of rays containing said edge. Its horizontal trace catches the ray from k^{\prime} at k. Then $n k$, the shadow of $n^{\prime} k^{\prime}$, is horizontal, being the trace of a vertical plane of rays on an isometrically-horizontal plane. The construction of the remainder is self-evident.

Letting $S T$ represent a small rod, oblique to isometric planes, assume any point on it, as u; find its plan, u_{1}; take the ray through u and find its trace w. Then $S w$ is the direction of the shadow on the vertical plane, and at r it runs off the vertical and joins with T.
634. Timber framings, drawn isometrically, are illustrated by Figures 398 and 399. In Fig. 398 the pieces marked A and B show one form of mortise and tenon joint, and are drawn with the lines in the customary directions of isometric axes. The same picces are represented again at C and D, all the lines having been turned through an angle of 30°, so that while maintaining the same relative direction to each other and being still truly isometric, they lie differently in relation to the edges of the paper-a matter of little importance when dealing with comparatively small figures, but affecting the appearance of a large drawing very materially.
635. Non-isometric lines.-Angles in isometric planes. In Fig. 399 a portion of a cathedral roof truss is drawn isometrically.

Three pieces are shown that are not parallel to isometric lines. To represent them correctly we need to know the real angles made by them with horizontal or vertical pieces, and use isometric coördinates or "offsets" in laying them out on the drawing.

In the lower figure we see at θ the actual angle of the inclined piece $M f^{\prime}$ to the horizontal. Offsets, $f l$ and $l C$, to any point C of the inclined piece, are laid off in isometric directions at $f^{\prime} l^{\prime}$
and $l^{\prime} C^{\prime}$, when $C^{\prime} f^{\prime} l^{\prime}$ (or θ^{\prime}) is the isometric view of θ. A similar construction, not shown, gave the directions of pieces D and D^{\prime}.

Much depends on the choice of the isometric centre. Had N been selected instead of B, the top surfaces of the inclined pieces would have been nearly or quite projected in straight lines, rendering the drawing far less intelligible.

The student will notice that the shade lines on Fig. 399 are located for effect, and in violation of the usual rule, it having been found that the best appearance results from assuming the light in such direction as to make the most shade lines fall centrally on the timbers.
636. Non-isometric lines.-Angles not in isometric planes. To draw lines not lying in isometric planes requires the use of three isometric offsets. As one of the most frequent applications of isometric drawing is in problems in stone cutting, we may take one such to advantage in illustrating constructions of this kind.

Fig. 400 shows an arched passage-way, in plan and eleration. The surface $n o, r^{\prime} l^{\prime} n^{\prime} o^{\prime}$ is vertitical as far as $n^{\prime} 0^{\prime}$, and conical (with vertex J, C^{\prime}) from there to $n^{\prime \prime} o^{\prime \prime}$. The vertical surface on $n n$ is tangent at n^{\prime} to the cylinder $n^{\prime} f^{\prime} e^{\prime} o^{\prime \prime}$. Similarly, $m m$ is vertical to m^{\prime}, and there changes into the cylinder $m^{\prime} g^{\prime} h^{\prime}$.

The radial bed $b^{\prime} g^{\prime}$ is indicated on the plan (though not in full size) by parallel lincs at bcfigzb. The bed $a^{\prime} h^{\prime}$ is of the same form as $b^{\prime} g^{\prime}$, being symmetrical with it.

In Fig. 401 we have an enlarged drawing of the keystone with the plan inverted, so that all the faces of the stone may be correctly represented as seen. The isometric drawing is made to correspond, that is, it represents the stone after a 180°-rotation about an axis perpendicular to the paper.

The isometric block in which the keystone can be

$$
\text { Fig- } 401
$$

 inscribed is shown in dotted lines, its dimensions, derived from the projections,
 being length, $A A_{1}=a a$; breadth, $A B=a^{\prime} b^{\prime} ;$ height, $A O=a^{\prime} p$.

The top surface $a^{\prime} b^{\prime}$ becoming the lower in the isometric, reverses the direction of the lines. Thus, a^{\prime} is seen at A, and b^{\prime} at B. To get D make $A U=a^{\prime} u$, then $U D=u d^{\prime}$. Make C symmetrical with D and join with B, and also D with A. WQ equals $w^{\prime} q^{\prime}$, for the ordinate of the middle point of the arc.
$D E$ is not an isometric line, hence to reach E from A we make $A T=a^{\prime} t ; \quad T c^{\prime \prime}=t e^{\prime}, \quad$ and $e^{\prime \prime} E=a y$ (the distance of e from the plane $a b$).

The remainder of the construction is but a duplication of one or other of the above processes.

The principle, that lines that are parallel on the object will also be parallel on the drawing, may be frequently availed of in the interest of rapid construction or for a check as to accuracy.
horizontal projection or one－plane descriptive geometry．
637．One－Plane Descriptive Geometry or Horizontal Projection is a method of using orthographic projections with but one plane，the fundamental principle being that the space－position of a point is known if we have its projection on a plane and also know its distance from the plane．

Thus，in Fig．402，a with the subscript 7 shows that there is a point A ，vertically above a and
Fig．402．at seven units distance from it．The significance of b_{3} is then evident，and to
 show the line in its true length and inclination we have merely to erect perpen－ diculars $a A$ and $B b$ ，of seven and three units respectively，join their extremities， and see the line $A B$ in true length and inclination．

In this system the horizontal plane alone is used；One－plane Descriptive is therefore applied only to constructions in which the lines are mainly or entirely horizontal，as in the mapping of small topographical or hydrographical surveys，in which the curva－ ture of the earth is neglected；also in drawing fortifications，canals，etc．

The plane of projection，usually called the datum or reference plane，is taken，ordinarily，below all the points that are to be projected，although when mapping the bed of a stream or other body of water it is generally taken at the water line，in which case the numbers，called indices or refer－ ences，show depths．

638．A horizontal line evidently needs but one index．This is illustrated in mapping contour lines，which represent sections of the earth＇s surface by a series of equidistant horizontal planes．

エ゙ュร．403．

In Fig． 403 the curves indicate such a series of sections made by planes one yard，metre or other unit apart，the larger curve being assumed to lie in the reference or datum plane，and there－ fore having the index zero．

The profile of a section made by any vertical plane $M N$ would be found by laying off－to any assumed scale for vertical distances－ordinates from the points where the plane cuts Fis－ 404 ． the contours，giving each ordinate the same number of units as are in the index of the curve from which it starts．Such a section is shown in the shaded portion on the left，on a ground line $P Q$ ，which represents $M N$ transferred．

639．The steepness of a plane or surface is called its slope or declivity． A line of slope is the steepest that can be drawn on the surface．A scale of slope is obtained by graduating the plan of a line of slope so that each unit on the scale is the projection of the unit＇s length on the original line． Thus，in Fig．404，if $m n$ and $o B$ are horizontal lines in a plane，one hav－ ing the index 4 and the other 9 ，the point B is evidently five units
 above A ，and the five equal divisions between it and A are the projections of those units．

The scale of slope is often used as a ground line upon which to get an edge view of the plane. Thus, if $B B^{\prime}$ is at 90° to $B A$, and its length five units, then $B^{\prime} A$ is the plane, and ϕ is its inclination.

The scale of slope is always made with a double line, the heavier of the two being on the left, ascending the plane.

As no exhaustive treatment of this topic is proposed here, or, in fact, necessary, in view of the simplicity of most of the practical applications and the self-evident character of the solutions, only two or thrce typical problems are presented.
640. To find the intcrsection of a line and plane. Let $a_{15} b_{30}$ be the line, and $X I$ the plane. Draw horizontal lines in the plane at the levels of the indexed points. These, through 15 and 30 on $X Y$, meet horizontal lines througl a and b at e and d; $e d$ is then the line of intersection of $X Y$ and a plane containing $a b$; hence c is the intersection of the latter with $X Y$.

The same point c would have resulted if the lines $a e$ and $b d$ had been drawn in any other direction while still remaining parallel. Fig. 40s.

641. To obtain the line of intersection of two planes, draw two horizontals in each, at the same level, and join their points of intersection.

In Fig. 406 we have $m n$ and $q n$ as horizontals at level 15, one
 in each plane. Similarly, $x y$ and $y s$ are horizontals at level 30 . The planes intersect in $y n$.
Were the scales of slope parallel, the planes would intersect in a horizontal line, one point of which could be found by introducing a third plane, oblique to the given planes, and getting its intersection with each, then noting where these lines of intersection met.
642. To find the section of a hill by a plane of given slope. Draw, as in the problem of Art. 640, horizontal lines in the plane, and find their intersections with contours at the same level. Thus, in Fig. 403, the plane $X Y$ cuts the hill in the shaded section wearest it, whose outlines pass through the points of intersection of horizontals $10,20,30$ of the plane, with the like-numbered contour lines.

CHAPTER XVI.

OBLIQUE OR CLINOGRAPHIC PROJECTION.-CAVALIER PERSPECTIVE.-CABINET PROJECTION. MILITARY PERSPECTIVE.

643. If a figure be projected upon a plane by a system of parallel lines that are oblique to the plane, the resulting figure is called an oblique or clinographic projection, the latter term being more frequently employed in the applications of this method to crystallography. Shadows of objects in the sunlight are, practically, oblique projections.

In Fig. 407, $A B n m$ is a rectangle and $m x y n$ its oblique projection, the parallel projectors $A x$ and $B y$ being inclined to the plane of projection.
644. When the projectors make 45° with the plane this system is known either as Cavalier Perspective,

Fis. 407.
 Cabinet Projection or Military Perspective, the plane of projection being vertical in the case of the first two, and horizontal in the last.
645. Cavalier Perspective.-Cabinet Projection.Military Perspective. As just stated, the projectors being inclined at 45° for the system known by the three names above, we note that in this case a line perpendicular to the plane of projection, as $A m$ or $B n$ (Fig. 407), will have a projection equal to itself. It is, therefore, unnecessary to draw the rays for lines so situated, as the known original lengths can be directly laid out on lines drawn in the assumed direction of projections.

Let abcd.n be a cube with one face coinciding with the vertical plane. If the arrow m indicates one direction of rays making 45° with V , then the ray $h n$, parallel to m, will give h as the projection of n, and from what has preceded we should have $c h$ equal to $c n$, and analogously for the remaining edges, giving abcd.i for the cavalier perspective of the cube.

Similarly, EKH is a correct projection of the same cube for another direction of projectors, and we may evidently draw the oblique edges in any other direction and still have a cavalier perspective, by making the projected line equal to the original, when the latter is perpendicular to the plane of projection.
646. Oblique projection of circles. Were a circle inscribed in the back face of the cube $D K G$ (Fig. 407) the projectors through the points of the circle would give an oblique cylinder of rays, whose intersection with the vertical plane $D X$ would be a circle, since parallel planes cut a cylinder in similar sections. We see, therefore, that the oblique projection of a circle is itself circular when the plane of projection is parallel to that of the circle. In any other case the oblique projection of a circle may be found like an isometric projection (see Art. 631), viz., by drawing chorls of the circle, and tangents, then representing such auxiliary lines in oblique view and sketching the curve (now an ellipse) through the proper points. Fig. 408 illustrates this in full.
647. Oblique projection is even better adapted than isometric to the representation of timber framings, machine and bridge details, and other objects in which straight lines-usually in mutually perpendicular directionspredominate, since all angles, curres, etc., lying in planes parallel to the paper, appear of the same form in projection, while the relations of lines perpendicular to the paper are preserved by a simple ratio, ordinarily one of equality.
648. When the rays make with the plane of projection an angle greater than 45°, oblique projections give effects more closely analogous to a true perspective, since the foreshortening is a closer approximation to that ordinarily existing from a finite point of view. This is illustrated by Fig.
 409, in which an object $A B D E$, known to be $1^{\prime \prime}$ thick, has its depth represented as only $\frac{1}{4}^{\prime \prime}$ in the second view, insteal of full size, as in a cavalier perspective, the front faces being the same size in each. Provided that the scale of reduction were known, $a b c d k f$ would answer as well for a working drawing as a 45°-projection.
649. By way of contrast with an isometric view the timber framing represented by Fig. 398 is

Fig. 411.

drawn in cavalier perspective in Fig. 410. Reference may advantageously be made, at this point, to Figs. 44, 45 and 46 , which are oblique views of one form.

The keystone of the arch in Fig. 400, whose isometric view is shown in Fig. 401, appears in oblique projection in Fig. 411; the direction of lines not parallel to the axes of the circumscribing prism being found by "offsets" that must be taken in axial directions.
650. Shadows, in oblique projection. As in other projections, the conventional direction for the light is that of the body-diagonal of the oblique cube. The edges to draw in shade lines are obvious on inspection. (Fig. 412).
651. An interesting application of oblique projection, earlier mentioned, is in the drawing of crystals. Fig.
 414 illustrates this, in the representation of a form common in fluorite and called the tetrahexahedrom, bounded by twenty-four planes, each of which fulfills the condition expressed in the formula
$\infty: \mathrm{n}: 1$; that is, each face is parallel to one axis, cuts another at a unit's distance, and the third
 at some multiple of the unit.

The three axes in this system are equal, and mutually perpendicular; but their projected lengths are $a a^{\prime}, b b^{\prime}, c c^{\prime}$.

The direction of projectors which was assumed to give the lengths shown, was that of $R N$ in Fig. 413, derived by turning the perpendicular $C N$ through a horizontal angle $C N M=18^{\circ} 26^{\prime}$, and then elevating it through a vertical angle $M N S=9^{\circ} 28^{\prime}$; values that are given by Dana as well adapted to the exhibition of the
forms occurring in this system.
The axes once established, if we wish to construct on them the form $\infty: 2: 1$, we lay off on

each (extended) one-half its own (projected) length; thus $c c^{\prime \prime}$ and $c^{\prime} c^{\prime \prime \prime}$ each equal $o c^{\prime} ; b b^{\prime \prime}$ equals $o b$, etc. Then draw in light lines the traces of the various faces on the planes of the axes. Thus, ' $a^{\prime} b$ " and $a \prime b$ each represent the trace of a plane cutting the c-axis at infinity, and the other axes at either one or two units distance; the former intercepting the two units on the b-axis and the onc on the a-axis, while for $a^{\prime \prime} b$ it is exactly the reverse. Through the intersection of $a^{\prime} b^{\prime \prime}$ and $a^{\prime \prime} b^{\prime}$ a line is drawn parallel to the c-axis, indefinite in length at first, but determinate later by the intersection with it of other edges similarly found.

The student may develop in the same manner the forms $\infty: 3: 1 ; \infty: 2: 3 ; \infty: 3: 4 ; \infty: 4: 5$.

APPENDIX

Table of Proportions of Standard Washers Page II
Section of Standard Rail, one hundred pounds to the yard Page III
Sectional View of Allen-Richardson Slide Valve Page IV
Figures serviceable for variations of problems in Projection, Sections, Conversion of views from one system of projection to another, Shadows, Perspective, etc. Page V
Note to Art. 113, on the Sections cut from the Annular Torus by a Bi-tangent Plane Page VI
Note to Art. 131, on the Projection of a Circle in an Ellipse Page VI
The Nomenclature and Double Generation of Trochoids Pages VII-XIV
Alphabets and Ornamental Devices for Titles Pages XV-XXVIII

Diam. of Bolt.	Diam. of Washer.	Thickness of Washer.	Diam. of Bolt.	Diam. of Washer.	Thickness of Washer.
$\frac{1}{4}$	$\frac{9}{16}$	$\frac{3}{32}$	$1 \frac{1}{4}$	$2 \frac{9}{16}$	$\frac{5}{16}$
$\frac{5}{16}$	$\frac{11}{16}$	$\frac{1}{8}$	$1 \frac{3}{8}$	$2 \frac{13}{16}$	$\frac{5}{16}$
$\frac{3}{8}$	$\frac{13}{16}$	$\frac{1}{8}$	$1 \frac{1}{2}$	$3 \frac{1}{16}$	$\frac{5}{16}$
$\frac{7}{16}$	$\frac{15}{16}$	$\frac{1}{8}$	$1 \frac{5}{8}$	$3 \frac{5}{16}$	$\frac{3}{8}$
$\frac{1}{2}$	$1 \frac{1}{16}$	$\frac{3}{16}$	$1 \frac{3}{4}$	$3 \frac{9}{16}$	$\frac{3}{8}$
$\frac{9}{16}$	$1 \frac{5}{16}$	$\frac{3}{16}$	$1 \frac{7}{8}$	$2 \frac{13}{16}$	$4 \frac{1}{16}$
$\frac{5}{8}$	$1 \frac{9}{16}$	$\frac{1}{4}$	$2 \frac{1}{4}$	$4 \frac{9}{16}$	$\frac{3}{8}$
$\frac{3}{4}$	$1 \frac{13}{16}$	$\frac{1}{4}$	$2 \frac{1}{2}$	$5 \frac{1}{16}$	$\frac{3}{8}$
$\frac{7}{8}$	$2 \frac{1}{16}$	$2 \frac{5}{16}$	$2 \frac{3}{4}$	$5 \frac{9}{16}$	$\frac{1}{2}$
1	$1 \frac{5}{8}$		3	$6 \frac{1}{16}$	$\frac{1}{2}$
			$\frac{1}{2}$		

TABLE OF PROPORTIONS OF WASHERS.

P. R. R. STANDARD RAIL SECTION.

100 LBS. PER YARD.
Draw the above either full size or enlarged 50%. In either case draw section lines in Prussian blue, spacing not less than one-twentieth of an inch. Dimension lines, red. Dimensions and arrow heads, black. Lettering and numerals either in Extended Gothic or Reinhardt Gothic.

ALLEN-RICHARDSON SLIDE VALVE.
Draw either full size or larger. Section lines in Prussian blue, one-twentieth of an inch apart. Dimension lines, red. Dimensions and arrow heads, black. Lettering and numerals either in Extended Gothic or Reinhardt Gothic.

broof that a bl-tangext plane to an annular torus cuts it in two equal circles. (see art. 113).
Let $d m z g$ and $n l h b$ be the plans of the curves of section, $d^{\prime} z^{\prime}$ their common elevation. The plane $M N$ cuts the equators of the surface at the points g, h, m, n; and if the sections are cireles their diameters must obriously equal $g m$ or $h n$.

Take $g k$ equal to one-half $g m$. Let R denote the radius of the generating circle of the torus. Then $g k=R+o h=a^{\prime} o^{\prime}$. We have also o $k=R$.

Assume any horizontal plane $P Q$, eutting the torus in the cireles ecv and $t x y$, and the plane $M N$ in the line $e v, e^{\prime}$. This line gives e and f on one of the curves, y and v on the other. Their elevation is e^{\prime}.

If $e d m$ is a circle we must have $e k=$ $g k=a^{\prime} o^{\prime}$. Draw eo; make $k d$ paralle to $o a$, and er perpendicular to it. Then, as the difference of level of the points k and e is seen at $s^{\prime} e^{\prime}$, we will have $\sqrt{k e^{2}}+s^{\prime} e^{\prime 2}$ for the true length of the line whose plan is $k e$; and $k e^{2}+s^{\prime} e^{2}$ is to equal $g k^{2}$.

In the right triangle $s p k$ we have $k e^{2}$ $=p k^{2}+s p^{2}$. Then $k e^{2}+s^{\prime} e^{\prime 2}=p k^{2}+$ $s p^{2}+s^{\prime} e^{\prime 2}$. The second member becomes $a^{\prime} o^{\prime 2}$ by substitution and reduction. For
 $p k^{\prime 2}\left(=o^{\prime} s^{\prime 2}\right)$ employ $\left[\left(s^{\prime} e^{\prime 2} \cdot a^{\prime} o^{\prime 2}-s^{\prime} e^{\prime} .^{2} R^{2}\right) \div R^{2}\right]$, derived from triangles $o^{\prime} s^{\prime} e^{\prime}$ and $o^{\prime} a^{\prime} b^{\prime}$; and as
 R and $a^{\prime} u^{\prime}$ disappear by using values derived from the triangle $a^{\prime} u^{\prime} e^{\prime}$.

NOTE TO ART. 131, ON TIIE ELLIPSE AND JTS AUXILIARY CIRCIES.
The relation of T to t and T_{1} is thus shown analytically: Representing lines by letters, let
 $O A(=O B=F C)=a ; \quad O C=b ; \quad O F=O F_{1}=e, \quad$ a constant quantity; $O S=x ; S T=y ; S T_{1}=y^{\prime} ; \quad F T=\rho ; \quad F_{\mathrm{t}} T=\rho^{\prime}$. Then $\rho+\rho^{\prime}$ $=2 a=\sqrt{y^{2}+(x+c)^{2}}+\sqrt{y^{2}+(x-c)^{2}}$, which, after squaring, and substituting b^{2} for $a^{2}-c^{2}$, gives $b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}$, the wellknown equation to the ellipse; written also $y^{2}=\frac{b^{2}}{a^{2}}\left(a^{2}-x^{2}\right) \ldots(1)$.

In the circle $A E B K$ we have $O T_{1}=r=a=\sqrt{S T_{1}^{2}+O S^{2}}$ $=\nu \overline{\left(y^{\prime}\right)^{2}+x^{2}} ;$ whence $\left(y^{\prime}\right)^{2}=a^{2}-x^{2} \ldots(2)$.

Dividing (1) by (2), remembering that x is the same for both T_{1} and T, we have $\frac{y^{2}}{\left(y^{\prime}\right)^{2}}=\frac{b^{2}}{a^{2}}$, whence $y: y^{\prime}:: b: a$; that is, the ordinate of the ellipse is to the ordinate of the circle as the semiconjugate axis is to the semi-transverse. But in the similar triangles $T_{1} S O, T_{1} T t$, we have $S T: S T_{1}: 0 t: O T_{1}$; that is, $y: y^{\prime}:: b: a$, the relation just established otherwise for a point of an ellipse.

THE NOMENCLATURE AND DOUBLE GENERATION OF TROCHOIDS.

the nomenclature and double generation of trochoids.

[The anomalles and lnadequateness of the pre-exlsting nomenclatare of trochoidal carves led to an attempt on the part of the writer to slmplify the matter, and the following paper is, in substance, that presented upon the subject before the American Associatlon for the Advancement of Sclence, in 1887. Two brief quotatlons from some of the communicatlons to which it led will Indicate the result.

From Prof. Francls Reuleaux, Director of the Royal Polytechnle InstJtation, Berlin:
"I agree with pleasure to your discrimination of major, minor and medial hypotrochoids and will in future opply these novel designations."
From Prof. Richard A. Proctor, B.A., anthor of Geometry of Cycloids, etc.:
"Four system seems complete and satisfactory. I was conscious that my own suggestions were but partially corrective of the manifest anomalies in former nomenclatures."

The final outcome of the Jnvestigation, as far as technical terms are concerned, appears on page 59 , in a tabular arrangement suggested by that of Kennedy, and which is hoth a modiflcation and an extension of his ingenions scheme. The property of double generation of trocholds, when the tracing-point ls not on the circumference of the rolling circle, is even at present writing not treated by some authors of advanced text-books who nevertheless emphasize it for the epl-, hypo- and peri-cycloid. This fact, and the importance of the property both In liself and as leading to the solution of a vexed question, are my main reasons for introducing the paper here ln nearly lis original length; although to the student of mathematical tastes the original demonstration presented may prove to be not the least interestlng feature of the investigation.

The demonstrations alone might have appeared in Chapter V-their rightful setting had this been merely a treatise on plane curves, but they would there have unduly lengthencd an already large division of the work, while at ibat point their especial significance could not, for the same reason, have been sufficicntly shown.]

That would be an ideal nomenclature in which, from the etynology of the terms chosen, so clear an idea could be obtained of that which is named as to largely anticipate definition, if not, indeed, actually to render it superfluous. This ideal, it need hardly be said, is seldom realized. As a rule we meet with hut few self-explanatory terms, and the greater their lack of suggestiveness the greater the need of clear defnition. Instances are not wanting of ill-chosen terms and even actual misnomers having become so generally adopted, in spite of an occasional protest, that we can scarcely expect to see them replaced by others more appropriate. Whether this be the case or not, we have a right to expect, especially in the exact sciences, and preëminently in Mathematics, such clearness and comprebensiveness of definition as to make ambiguity impossible. But in this we are frequently disappointed, and notably so in the class of curves we are to consider.

Toward the close of the seventeenth century the mechanician De la Hire gave the name of Roulette-or roll-traced curve-to the path of a point in the plane of a curve rolling upon any other curve as a base. This suggestive term has been generally adopted, and we may expect its complementary, and equally self-interpreting term, Glissette, to kcep it company for all time.

By far the most interesting and important roulettes are those traced by points in the plane of a circle rolling upon another circle in the same plane, such curves having valuable practical applications in mechanism, while their geometrical properties have for centuries furnished an attractive field for investigation to mathematicians.

The terms Cycloids and Trochoids bave been somewhat indiscriminately used as general names for this class of curves. As far as derivation is concerned they are equally appropriate, the former being from кúk $\lambda o s$, circle, and $\epsilon \bar{\delta} o s$, form; and the latter from $\tau \rho b \chi o s$, wheel, and $\epsilon i \delta o s$. Preference has, however, been given to the term Trochoids by several recent writers on matbematics or mechanism, among them Prof. R. H. Thurston and Prof. De Volson Wood; also Prof. A. B. W. Kennedy of England, the translator of Reuleaux' Theoretische Kinematik, in which these curves figure so largely as centroids. Adopting it for the sake of aiding in establishing uniformity in nomenclature I give the following definition:

If two circles are tangent, either externally or internally, and while one of them remains fixed the other rolls upon it without sliding, the curve described by any point on a radius of the rolling circle, or on a radius produced, will be a Trachoid.

Of these curves the most interesting, both historically and for its mathematical properties, is the cycloid, with which all are familiar as the path of a point on the circumference of a circle which rolls upon a straight line, i. e., the circle of infinite radius.

The term "cycloid" alone, for the locus described, 18 almost universally employed, although it is occasionally qualified by the adjectives right or common.

Of almost equally general acceptation, although frequently inappropriate, are the adjectives curtate and prolate, to indicate trochoidal curves traced by points respectively without and within the circumference of the rolling circle (or generator as it will hercafter be termed) whether it roll upon a circle of finite or infinite radius.

As distinguished from curtate and prolate forms all the other trochoids are frequently called common.
Should the fixed circle (called either the base or director) have an infinite radius, or, in other words, be a straight line, the curtate curve is called by some the curtate cycloid; by others the curtate trochoid; and similarly for the prolate forms. Since uniformity is desirable I have adopted the terms which seem to have in their favor the greater number of the authorities consulted, viz., curtate and prolate trochoid. It should also be further stated here, with reference to this word "trochoid," that it is usually the termination of the name of every curtate and prolate form of trochoidal curve, the termination cycloid indicating that the tracing point is on the circumference of the generator.

With the base a straight line the curtate form consists of a series of loops, while the prolate forms are sinuous, like a wave line; and the same is frequently true when the base is a circle of finite radius; hence the suggestion of Prof. Clifford that the terms looped and wavy be employed instead of curtate and prolate. But we shall see, as we proceed, that they would not be of universal applicability, and that, except with a straight line director, both curtate and prolate curves may be, in form, looped, wavy, or neither. And we would all agree with Prof. Kennedy that as substitutes for these terms "Prof. Cayley's kru-nodal and ac-nodal hardly seem adapted for popular use." It is therefore futile to attempt to sccure a nomenclature which shall, throughout, suggest both the form of the locus and the mode of its construction, and we must rest content if we completely attain the latter desideratum.

We have nest to consider the trochoids traced during the rolling of a circle upon another circle of finite radius. At this point we find inadequacy in nomenclature, and definitions involving singular anomalies. The earlier definitions have been summarized as follows by Prof. R. A. Proctor, in his valuable Geometry of Cycloids:-
"The $\left\{\begin{array}{l}\text { epicycloid } \\ \text { hypocycloid }\end{array}\right\}$ is the curve traced out by a point in the circumference of a circle which rolls without sliding on a fixed circle in the same plane, the two circles being in $\left\{\begin{array}{l}\text { external } \\ \text { internal }\end{array}\right\}$ contact."

As a specific example of this class of definition I quote the following from a more recent writer:-"If the generating circle rolls on the circumference of a fixed circle, instead of on a fixed line, the curve generated is called an epicycloid if the rolling circle and the fixed circle are tangent externally, a hypocycloid if they are tangent internally." (Byerly, Differential Calculus, 1880.)

In accordance with the foregoing definitions every cpicycloid is also a hypocycloid, while only some hypocycloids are epicycloids. Salmon (Higher Plane Curves, 1879) makes the following explicit statement on this point:-"The hypocycloid, when the radius of the moving circle is greater than that of the fixed circle, may also be generated as an epicycloid."

To avoid any anomaly Prof. Proctor has presented the following unambiguous definition:-
"An $\left\{\begin{array}{l}\text { epicycloid } \\ \text { hypocycloid }\end{array}\right\}$ is the curve traced out by a point on the circumference of a circle which rolls without sliding on a fixed circle in the same plane, the rolling circle touching the $\left\{\begin{array}{l}\text { outside } \\ \text { inside }\end{array}\right\}$ of the fixed circle."

This certainly does away with all confusion between the epi- and hypo-curves, but we shall find it inadequate to enable us, clearly, to make certain desirable distinctions.

By some writers the term external epicycloid is used when the gencrator and director are tangent cxternally, and, similarly, internal epicycloid when the contact is internal and the larger circle is rolling. Instead of internal epicycloid we often find external hypocycloid used. It will be sufficient, with regard to it, to quote the following from Prof. Proctor:"It has hitherto been usual to define it (the hypocycloid) as the curve obtained when either the convexity of the rolling circle touches the concavity of the fixed circle, or the concavity of the rolling circle touches the convexity of the fixed circle. There is a manifest want of symmetry in the resulting classification, sceing that while every epicycloid is thus regarded as an external hypocycloid, no hypocycloid can be regarded as an internal epicycloid. Moreover, an external hypocycloid is in reality an anomaly, for the prefix 'hypo,' used in relation to a closed figure like the fixed circle, implies interiorness."

To avoid the confusion which it is evident from the foregong has existed, and at the same time to conform to that principle which is always a safe one and never more important than in nomenclature, viz., not to use two words where one will suffice, I prefer reserving the term "epicycloid" for the case of external tangency, and substituting the more recently suggested name pericycloid for both "internal epicycloid" and "external hypocycloid." The curtate and prolate forms would then be called peritrochoids. By the use of these names and those to be later presented we can easily make distinctions which, without them, would involve undue verbiage in some cases, and, in others, the use of the ambiguous or inappropriate terms to which exception is taken. And the necessity for such distinctions frequently arises, especially in the study of kinematics and machine design. Take, for example, problems like many in the work of Reuleaux already mentioned, relating to the relative motion of higher kinematic pairs of elements, the centroids being circular arcs and the point-paths trochoids. In such cases we are quite as much concerned with the relative position of the rolling and fixed circles as with the form of a point-path. In solving problems in gearing the same need has been felt of simple terms for the trochoidal profiles of the teeth, which should imply the method of their generation.

Although they have not, as yet, come into general use, the nanes pericycloid and peritrochoid appear in the more recent editions of Weisbach and Reuleaux, and will undoubtedly eventually meet with universal acceptance.

Yet strong objection has been made to the term "pericycloid" by no less an autbority than the late eminent mathematician, Prof. W. K. Clifford, who nevertheless adopted the "peritrochoid." I quote the following from his Elements of Dynamic:-"Two circles may touch each other so that each is outside the other, or so that one includes the other. In the former case, if one circle rolls upon the other, the curves traced are called epicycloids and epitrochoids. In the latter case, if the inner circle roll on the outer, the curves are hypocycloids and hypotrochoids, but if the outer circle roll on the inner, the curves are epicycloids and peritrochoids. We do not want the name pericycloids, because, as will be seen, every pericycloid i_{3} also an epicycloid; but there are three distinct kinds of trochoidal curves." As it will later be shown that every peri-trochoid can also be generated as an epi-trochoid we can scarcely escape the conclusion that the name peritrochoid would also have been rejected by Prof. Clifford, had he been familiar with this property of double generation as belonging to the curtate and prolate forms as well. But it is this very property, possessed also by the hypo-trochoids, which necessitates a more extended nomenclature than that heretofore existing, and I am not aware that there has been any attempt to provide the nine terms essential to its completeness. These it is my principal object to present, and that they have not before been suggested I attribute to the fact that the double generation of curtate and prolate trochoidal curves does not seem to have been generally known, being entirely ignored in many treatises which make quite prominent the fact that it is a property of the epi- and hypo-cycloids, while, as far as I have seen, the only writer who mentions it proves it indirectly, by showing the identity of trochoids with epicyclics and establishing it for the latter.

As it is upon this peculiar and interesting feature that the nomenclature, as now extended, depends, the demonstrations necessary to establish it are next in order.

For the epi- and hypo-cycloid probably the simplest method of proof is that based upon the instantaneous centre, and which we may call a kinematic, as distinguished from a strictly geometrical, demonstration. It is as follows:-

Let F (Figs. 1 and 2) be the centre of the fixed circle, and r that of a rolling circle, the tracing point, P, being on the circumference of the latter. The point of contact, q, is -at the moment that the circles are in the relative position indicated-an instantaneous centre of rotation for every point in the plane of the rolling circle; the line $\mathbf{P} q$, joining such point of contact with the tracing point, is therefore a normal to the trochoid that the point P is tracing. But if the

normal P_{q} be produced to intersect the fixed circle in a second point, Q , it is evident that the same infinitesimal are of the trochoid would be described with Q serving as instantaneous centre as when q fulfilled that office. The point P will, therefore, evidently trace the same curve, whether it be considered as in the circumference of the circle r, or in that of a second and larger circle, R, tangent to the fixed circle at Q.

It is worth while, in this connection, to note what erroneous ideas with regard to these same loci were held by some writers as late as the middle of this century, -ideas whose falsity it would seem as if the most elementary gcometrical
 construction would have exposed. Reuleaux instances the following statement made by Weissenborn in his Cyclischen Kurven (1856): "If the circle described about m_{0} roll upon that described about \mathbf{M}, and if the describing point, B_{0}, describe the curve $\mathrm{B}_{0} \mathrm{P}_{1} \mathrm{P}_{2}$ as the inner circle rolls upon the arc $B_{0} b$, then, evidently, if the smaller circle be flxed and the larger one rolled upon it in a direction opposite to that of the former rotation, the point of the great circle which at the beginning of the operation coincided with B_{0} describes the same line $\mathrm{B}_{0} \mathrm{P}_{1} \mathrm{P}_{2}$." The fallacy of this statement is to us, perhaps, in the light of what has preceded, a little more evident than Weissenborn's deduction; although, as Reuleaux says, "his 'evidently' expresses the usual notion, and the one which is suggested by a hasty pre-judgment of the case. In poinu of fact B_{0} describes the pericycloid $B_{0} B^{\prime} B^{\prime \prime}$, which certainly differs sufficiently from the hypocycloid $B_{0} P_{1} P_{2}$."

We have next to consider the curtate and prolate epi-, hypo- and peri - trochoids.

As previously stated, I have seen no direct proof that they also possess the same property of double generation, but find that the kinematic method lends itself with equal readiness to its demonstration.

For the hypotrochoids, let R, Fig. 4, be the centre of the first rolling circle or generator, F that of the first director, and P the initial position of the tracing point. The initial point of tangency of generator and director is m. Let the generator roll over any arc of the director, as $m \mathrm{Q}$. The centre R will then be found at R_{2}, and the tracing point P at P_{2}. The point of contact, Q, will then be the instantaneous centre of rotation for P_{2}, and $P_{2} Q$ will, therefore, be a normal to the trochoid for that particular position of the tracing point.

The motion of P is evidently circular about R, while that of R is in a circle about F. The curve $P P_{1} P_{2} \ldots \ldots P_{6}$ is that portion of the hypotrochoid which is described while \mathbf{P} describes an are of 180° about \mathbf{R}, the latter meanwhile moving through an arc of 108° about F, the ratio of the radii being $3: 5$.

Now while tracing the curve indicated the point \mathbf{P} can be considered as rigidly connected with a second point, ρ, about which it also describes a circle, ρ meanwhile (like R) describing a circle about F. Such a point may be found as follows: - Take any position of P, as P_{2}, and join it with the corresponding position of R, as R_{2}; also join R_{2} to F. Let us then suppose $P_{2} R$ and $R_{2} F$ to be adjacent links of a four-link mechanism. Let the remaining links, $F \rho_{2}$ and $\rho_{2} P_{2}$, be parallel and equal to $P_{2} R_{2}$ and $R_{2} F$ respectively. Taking F as the fixed point of the mechanism let us suppose P_{2} moved toward it over the path $P_{2} P_{5} \ldots P_{6}$. Both R_{2} and ρ_{2} will evidently describe circular arcs about F; while the motion of P_{2} with respect to ρ_{2} will be in a circular arc of radius $\rho_{2} P_{2}$. We may, therefore, with equal correctness, consider ρ_{2} as the centre of a generator carrying the point P_{2}, and $\rho_{2} F$ a new line of centres, intersected by the normal $\mathrm{P}_{2} \mathrm{Q}$ in a second instantaneons centre, q, which, in strictest analogy with Q, divides the line of centres on which it lies into segments, $\rho_{2} q$ and $F q$, which are the radii of the second generator and director respectively; q being, like Q, the point of contact of the rolling and fixed circles for the instant that the tracing point is at P_{2}. The second generator and director, having $\rho_{2} q$ and $q F$ respectively for their radii, are represented in their initial positions, ρ being the centre of the former, and μ the initial point of contact. The second generator rolls in the opposite direction to the first.

It is important to notice that whereas the tracing point is in the first case within the generator and therefore traces the curve as a prolate hypotrochoid, it is without the second generator and describes the same curve as a curtate hypotrochoid. If we now let R and F denote no longer the centres, but the radii, of the rolling and fixed circles, respectively, we have for the first generator and director $2 R>F$, and for the second $2 R<F$.

It occurred to me that a distinction could very easily be made between trochoids generated under these two opposite relations of radii, by using the simple and suggestive term major hypotrochoid when 2 R is greater than F , and minor hypotrochoid when the opposite relation prevails. We would then say that the preceding demonstration had established the identity of a major prolate with a minor curtate hypotrochoid.

Similarly the identity of major curtate and minor prolate forms could be shown.

If the tracing point were on the circumference of the generator the trochoids traced would be, by the new nomenclature, major and minor hypo-cycloids.

It is worth noticing that for both hypo-cycloids and hypo-trochoids the centre F is the same for both generations, and that the radius F is also constant for both generations of a hypo-cycloid, but variable for those of a hypo-trochoid.

Having given the radii of generator and director for the construction of a hypo-trochoid, the method just illustrated will always give the lengths of the radii of the second rolling and fixed circles. The accuracy of the values thus obtained may be checked by simple formulae derived from the same figure, as follows:-

Radii being given for generation as a major hypotrochoid, to find corresponding values for the identical minor hypotrochoid.
Let F_{1} denote the radius $F Q[=F m]$ of the first director.
" $\mathrm{F}_{2} \quad$: " " $\mathrm{Fq} \quad[=\mathrm{F} \mu \mathrm{F}]$ " " second "
" r " " " $\mathrm{R}_{2} \mathrm{Q}[=\mathrm{R} m]$ " " first generator.
" ρ " " " $\rho_{2} q \quad[=\rho \mu]$ " " second "
" tr " " tracing radius of the first generation, i . e., the distance $\mathrm{R}_{2} \mathrm{P}_{2}$ (or RP) of
tracing point from centre of first generator.
Let t_{ρ} equal the second tracing radius $=\rho_{2} P_{2}=\rho \mathbf{P}$.
From the similar triangles $\mathrm{QF} q$ and $\mathrm{Q} \mathrm{R}_{2} \mathrm{P}_{2}$ we have $\mathrm{F}_{2}: \mathrm{F}_{1}:$: tr : r
whence $\mathrm{F}_{2}=\frac{\mathrm{F}_{1}(t r)}{r}$
also $\rho=\mathrm{F}_{2}-t r=\frac{\mathrm{F}_{1}(t r)}{r}-\operatorname{tr}=\operatorname{tr}\left\{\frac{\mathrm{F}_{1}}{r}-1\right\}$
and $t \rho=\rho_{2} \mathrm{P}_{2}=\mathrm{FR}_{2}=d$, the distance between the centers of first gencrator and director
If the radii be given for a minor hypotrochoid then $\mathrm{FQ}: \rho_{2} \mathrm{P}_{\mathbf{2}}:: \mathrm{F} q: \rho_{2} q$,
from which we have, as before,

$$
\begin{equation*}
\text { fixed radius desired }=\frac{\text { radius of given fixed circle } \times \text { given tracing radius }}{\text { radius of given generator }} \text {, } \tag{4}
\end{equation*}
$$

and, similarly, formulae (2) and (3) give the radius of desired generator and the corresponding tracing radius.
With the tracing point on the circumference of the generator, if we let $\mathrm{R}=$ radius of the latter for a major hypocycloid and r correspondingly for the minor curve, then

$$
\begin{array}{ccc}
\text { for a major hypocycloid } & \mathrm{R}=\mathrm{F}-r \\
\text { " a minor } \quad ، & r=\mathrm{F}-\mathrm{R} \tag{6}
\end{array}
$$

For the curves intermediate between the major and minor hypotrochoids, viz., those traced when the diameter of the rolling circle is exactly half that of the fixed circle, a separate division seems essential to completeness, and for such I suggest the general name of medial hypotrochoids. For these the formulae for double generation are the same as for the "major" and "minor" curves, and similarly derived.

With the tracing point on the circumference of the generator these curves reduce to straight lines, diameters of the director. In all other cases the medial hypotrochoids are an interesting exception to what we might naturally expect, being neither looped nor wavy, but ellipses. The fuilure of the terms "looped" and "wavy" to apply to these medial curves is paralleled by that of the adjectives "curtate" and "prolate," since, contrary to the signification of the latter terms, any ellipse generated as a curtate curve is larger than the largest prolate elliptical hypotrochoid having the same director. And as we have seen that, with scarcely an exception, "curtate" and "prolate" apply equally to the same curve, our only reason for retaining them is the fact of their general acceptation as indicative of the location of the tracing point with respect to the circumference of the rolling circle.

Since the medial hypotrochoids are either straight lines or ellipses, we can readily find for them that which we have found it useless to attempt to construct for the other trochoidal curves, viz., simple terms suggestive of their form; in fact the names "straight hypocycloid" and "elliptical hypotrochoid" have long been familiar to us all, and we have but to incorporate them into the nomenclature we are constructing.

It only remains to show that a prolate epi-trochoid can be generated as a curtate peri-trochoid, and vice versa, for which the demonstration is analogous to that given for the hypo-curves and leads to the following formulae, derived from the similar triangles $Q \mathrm{~F} q$ and $Q \mathrm{R}_{1} \mathrm{P}_{1}$ (the values being supposed to be given for the epi-trochoid and dcsired for the peri-trochoid):

$$
\begin{align*}
& \mathrm{F}_{2}=\frac{\mathrm{F}_{1}(t r)}{r} \tag{7}\\
& \rho=\operatorname{tr}\left\{\frac{\mathrm{F}_{1}}{r}+1\right\} \tag{8}\\
& t_{\rho}=d=\text { distance between centres of given generator and director }=F_{1}+r \\
& \text { If given as a peri-trochoid and desired as an epi-trochoid the tracing radius will again equal the distance between the }
\end{align*}
$$

given centres (in this case, however $=R-F$); the formula of the radius of desired director will be of the same form

$$
\text { Fig. } 5 \text {. }
$$

as equations (1) and (7); but
radius of second generator $=\operatorname{tr}\left\{1-\frac{\mathrm{F}_{1}}{r}\right\}$
With the tracing point on the circumference of the generator, and letting $\mathrm{R}=$ radius of the same for a peritrochoid and r for an epitrochoid, we have
for the epicycloid $r=\mathrm{R}-\mathrm{F}$.
" " pericycloid $\mathrm{R}=\mathrm{F}+r$

ALPHABETS AND ORNAMENTAL DEVICES FOR TITLES.

No. 1.

$$
\begin{aligned}
& 123456789 \\
& \text { No. } 2 .
\end{aligned}
$$

No. 3.

ABCDEFGHIJKLMNOPQRSTUVWXYZ 12345 \& 67890

No. 4.
Specimens of the Modified Italic Form called "Reinhardt Gothic", its various Forms and Applications having been handsomely illustrated by C.W. Reinhardt, in a special Text-Book devoted almost exclusively to this Form. It is much used on Engineering Drawings, chiefly on Account of its Compactness, and its Legibility after Reduction by Photo-Processes. An Inclined Ellipse is the Basis of many of the Letters. The " G "and " S " are peculiar, atso the "Q." Beginners usually make the Stems of the "p," "b," etc too long. The Forms of the Numerals should be particularly
noted.
abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ.

$$
1234567890
$$

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ.

$$
1234567890
$$

(The lettering above has been kindly contributed by the inventor of the system, who, at the request of the author, has reproduced the remarks made in the first edition, and also presents the letters in vertical form, with an illustration of the practical application of his method.)

No. 5.

ABCDEFGHIJKLMNOPQRSTUVWXYZ 12345 \& 67890

No. 6.

No. 7.
ABBCDEFGHIJKLMN○PQRSTUVWXYZ\& 1234567890

No. 8.

 No. 9.
ABBCDEFGHIJKLMNNOORQRRS T U V W X Y Z \&r 1234567890

No. 10.
ABCDEFGHIJKLMNOPQRSTUVWX YZ \& abedefghijk1mnopqrstavu xyz., 1234567890

No. 11.
A B CDEFGHIJKLMNOPQRSTUV W X Y Z \& 1234567890

No. 12.
HBEDEFGHIJKLMNOPQRSTXVWXYZ
 No. 13.

 No. 14.

$$
\begin{gathered}
\text { ABDDEFGHIJKLMNNQPQRS } \\
\text { abodefghijkImmnoparstuvMxyz } \\
1234567890 \\
\text { No. 16. }
\end{gathered}
$$

ABCDEFGHIJKLMNOPQRSTUVWXYZ
12345 \＆ 67090
No． 17.

No． 18.
玉 BCDEFCFIIエIKIMMNXQXSエUオ
 ひササxyz1234567890

No． 19.
A B CDEFGH！JKLMNOPQRST

 No． 20.

 17345187814

No． 22.
ABCDEFGHIJKLMNOPQRSTUVWXYZ\＆ 1234567890，

No． 23.
ABCGEFGHTUKLMNOPQRS TUVW下厂Z\＆abcdefgれijたてmu opqroturwxyz．，123456ヶ890 No． 24.
FBGDGFGちIdKLMROPQRSあUひ たfXYZ更ABGDEFGHIdKLMNOPQRSm UVWXYZ．，123条句67890

No． 25.

No． 26.
ABCDEFGHIJKLMNOPQRSTUVWXYZ \＆1234567890，．

No. 27.

No. 28.
 abcdefghijkImnopqrstuvweyz1234567890

No. 29.

ABCDEFGHIJKLMNOPQRST U V WXYZ\&1234567890

No. 30.

abedefghijkimmopqrstavoty?

No. 31.

No. 32.

No. 33.

> ABCDEFGHIdKLMNOPQRS TUVWXYZ\&1234567890

No. 34.

No. 35.

No. 36.
 Q PTUVWXYを\&abcae
 1234567890

No. 37.
AAABBCDDDEEFGHHH I JJKLMNNNOOPQRSTU V W X Y Z \& 123456789o

No． 38.
ABCDEFG「IJKL』たORQRSTO むせW゙XYZあabcdefghijkIm月
 No． 39.
ABCDEFGHIJKLMNOPQRSTU $V W X Y Z_{q}$ abedefghijk｜m \quad ०pq
stuvwxyz1234567890

No． 40.
 No． 41.

MIN○PQRSTUVW XYZ\＆1234567890

 No． 42.ABCDEFGHIJKL M NOPQRSTUVW XYZ \＆a bcdefghijkl m nopqrstuvwxyz．， 1234567890

ABCDEFGHIJKLMNOP QRSTUVWXYZ \&

No. 44.

$$
\begin{aligned}
& \mathfrak{A} \mathfrak{B C D} \mathfrak{G} \mathfrak{F} c \mathfrak{J} \mathfrak{J} \mathfrak{J} \mathfrak{L} \mathfrak{V}
\end{aligned}
$$

abcboeffghbijelmmopqestuvwayz
12234562 2890

No. 45.
A BCDEFGHIJKLMNOPQRS TUVWXYZ\&123456\%890

No. 46.
 PQ ASTUVWXYZ区 abcacfghijk1mnopqrst uvwxy公1234567890

ABCBEFGAIJKLMN © P
 QRS7 GVWXYZ\& * 12345 累 67890 *

No. 48.

$$
\text { No. } 49 .
$$

H B b DEFG
Q R S TUV UXY X \&
$\rightarrow 12545 \div 67890 ヶ$

No. 50.

© $\mathbb{R} \mathbb{S} \mathbb{T} \mathbb{V} \mathbb{W} X Y Z \&$ 1129450900

$\mathbb{A} \mathbb{F}^{[} \mathbb{E} \mathbb{E} \mathbb{E} \mathbb{H} I \mathbb{I} \mathbb{K} \mathbb{M} \mathbb{N}$

No. 52.

No. 53.
 © P RSTUV NXXYZ 4234567890

No. 54.
ABCDGEGH\&JKit $M N O P Q R S T$
$M W X Y Z \&$

$$
\text { No. } 55 .
$$

ABCDままGHノJLNN

$$
\begin{aligned}
& O P Q R S T U V W X Y Z \& \\
& 1234567890
\end{aligned}
$$

No． 56.

ABCDEFGHIJK LTMN○PQRSTU VW×YZ\＆12345 67890.

No． 57.

No. 58.

WW\&abodefghijklmnopqr stuvw Xyz.,1234567890

No. 59.

ABCDEGGRIJKLmNOPQR
 No. 60.

䞨

沙 AND
．㫫
 Fqb
 4

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

AN INITIAL FINE OF 25 CENTS WILL BE ASSESSED FOR FAILURE TO RETURN THIS BOOK ON THE DATE DUE. THE RE FOURTH WILL INCREASE TO SO CENTS ON TEVENTH DAY DAY AND
OVERDUE:

[^0]: * The flgures in this chapter are photo-reproductions of free-hand work and are intended not only to Illustrate the text but also to set a reasonable standard for sketeh-notes.

[^1]: *The "right slde" of a sheet is, prcsumably, that toward one, when-on holding lt up to the light-the mannfacturer's name, in water-mark, reads correctly.

[^2]: ${ }^{1}$ These methods of approximation were devised by Prof. Rankine. They are sufficientiy accurate for arcs not exceeding 60°. The error varies as the fourth power of the angle. The complete demonstration of Prob. 17 can be found in the Philosophical Magazine for October, 1867, and of Prob. 18 in the November issue of the same year.

 2 In his Graphical Statics Cremona states this to be the simplest method known for rectifying a semi-circumference. According to Bottcher it is due to a Polish Jesuit, Kochansky, and was published in the Acta Eruditorum Lipsiae, l685. The demonstration is as follows: Calling the radius unity, the diameter would have the numerical value 2.

 Then in Fig. 2, Plate I, we have on $=\sqrt{o h^{2}+h n^{2}}=\sqrt{o h^{2}+(k n-k h)^{2}}=\sqrt{4+\left(3-\tan 30^{\circ}\right)^{2}}=3.14159+$
 The tangent of an angle (abhreviated to "tan.") is a trigonometric function whose numerical vaiue can be obtained from a table. A draughtsman has such frequent occasion to use these functions that they are given here for reference, both as lines

[^3]: *This solntion is taken from Benjamin Alvord's Tangencies of Circles and of Spheres, published by the Smithsonian Institute. That valuable pamphlet presents geometrical solutions of the ten probiems of Apollonius on the tangencles of circles, and also of the fifteen problems on the tangencles of spheres, all of which are valuable to the draughtsman, both geometrically and as exercises in precision. The solutions are based on the principle, illustrated by Fig. 57, that the tangent line or tangent curre is the limit of all secant lines or curves. The problems on the tangencies of circles are as follows, the numher of soiutions in each case being given: (1) To draw a circle through three points. One solution. (2) Circie through two points and tangent to a given straight line. Two soiutions. (3) Circle through a given point and tangent to two straight lines. Two solutions. (4) Circle through two points and tangent to a given circie. Two soiutions. (5) Circle through a given point, tangent to a given straight line and a given circie. Four sointions. (6) Circle through a given point and tangent to two given circles. Four solutions. (7) Circle tangent to three straight lines, two only of which may be parailel. Four solutions. (8) Circle tangent to two straight lines and a given circle. Four solntions. (Art. 105, above). (9) Circle tangent to two given circles and a given straight line. Eight solutions. (10) Circle tangent to three given civeles. Eight solutions.

[^4]: * Olivier, Memoires de Geometrie Descriptive. l’aris, 1851.

[^5]: * An orlginal demonstration by Mr. George F. Barton (l'rinceton, '95, when a Junfor in the John C. Green School of science.
 t These curves can also be obtained by assuming two foci, as if for ellipse, but taking the product of the focal radil as a constant quantity, some perfect square. $1 f \rho^{\prime}=36$ then a point on the curve would be found at the intersection of ares having the focl as centres, and for radii $2^{\prime \prime}$ and $18^{\prime \prime}$, or $4^{\prime \prime}$ and $9^{\prime \prime}$, etc. The Lemnlscate results when the constant assumed is the square of haif the distance betwecn the fock.

[^6]: * Schlömilch, Geometrie des Maasses, 1874.

[^7]: * Locus is the Latin for place; and in rather untechnical language, althnugh in the exact sense in which it is uscd mathe. matically, we may say that the locus of points or lines is the place where gou may expect to find them under their conditions of restriction. For cxample, the surface of a sphere is the locus of all points equidistant from a fixed point (its centre). The locus of a point moving in a plane so as to remain at a constant distance from a given fixed point, is a clrcle having the latter point as its centre.

[^8]: * Reulcaux' nomenclature; also called centrodes by a number of writers on kinematics.

[^9]: *" Although the lnvention of the eyclold is attributed to Galleo, it ls certaln that the family of curves to whlch it belongs had been known and some of the propertles of such curves lnvestlgated, nearly two thousand years before Galileo's time, if not earller. For anclent astronomers explalned the motlon of the planets by supposing that each planet travels uniformly round a clrcle whose centre travels unlformly around another circle."-Proctor, Geometry of Cycloids.

[^10]: *Wood, Elements of Co-ordinate Geometry, p. 209.

[^11]: * Re-printed in substance in the Appendix.

[^12]: * legarding thelr double generation refer to the Appendix. lin dlustrating both methods In one figure it will add greatly to the appearance and also the lntelliglbllity of the drawing if colors are used, red for one construction and blue for the other.

[^13]: *Term due to Reuleaux, and based upon the fact that Cardano (16th century) was probably the first to investigate the paths described by polnts during thedr rolling. +From Cardis, the Latin for heart.

[^14]: * The day of writing the above article the followlig item Rppeared in the New York Evening Post: visltors to the Royal Observatory, Greenwich, will hereafter miss the great cyllndrleal structure whlch has for a quarter century and more covered the largest telescope possessed by the Observatory. Notwithstanding lts slze tho Astronomer lioyal has now procured through the Lords Commissioners a telescope more than twice as large as the old one.... The optical peeullarities embodled in the new instrument whll render lt one of the three most powerful telescopes at present in existence.... The peeullar architectural feature of the building which is to shelter the new telescope is that its dome, of thirty-six feet diameter, will surmount a tower having a diameter of only thirty-one feet. Technically, the form adopted is the surface generated by the revolution of an involute of a circle."

[^15]: * A scrles of curves much more closely resembling those of a sheli can be obtained by tracing the paths of points on the plston-rod of an oscillating cylinder. See Arts. 157 and 158 for the principles of their construction.

[^16]: *Leslle. Geometrical Analysis. 1821.

[^17]: *For a demonstration the student may refer to Rankine's Applied Mechanics, Art. 51.

[^18]: *Leslle. Geametrical Analysis. Edinburgh, 1821.

[^19]: * American Journal of Mathematics, 1878.
 \dagger Salmon. Higher Plane Curves. Art. 117.

[^20]: ${ }^{1}$ Rankine. Appilied Mechanics. Art. 175.
 2 In the expression $10^{2}=100$ the quantity "2" Is called the logarithm of 100 , lt belng the exponent of the power to whlch 10 most be raised to give 100 . Slmilarly 2 would be the logarlthm of 64 , were 8 the base ol number to be ralsed to the power Indicated.

[^21]: ${ }^{1}$ Tho get the byperbolle logarithm of a number multiply its common logarlthm by 2.3026 .
 ${ }^{2}$ In circulav measure $360^{\circ}=2 \pi r$, which, for $r=1$, becomes $6.28318 ; 180^{\circ}=3.14159 ; 90^{\circ}=1.5708 ; 60^{\circ}=1.0472 ; 45^{\circ}=0.7854 ; 30^{\circ}=$ $0.5236: 1^{\circ}=0.0174533$.

[^22]: * Refer to Art. 27 wltb regard to the pens to be used for the varlous styles of letters.

[^23]: * Pnblished by the D. Van Nostrand Company, New York, +American Edition revised and published by Edward L. Wilson, New York.

[^24]: * The following articles should be carefully reviewed at thls point: 120; 191; 344-6; 389, and Case 6 of Art. 396 .

[^25]: * In the interest of compactness the "First Angle" position of the views (Art. 385) is employed in Figs. 250, 253 and 255.

[^26]: * For full treatment of the invoiute of a clrcie refer to Arts. 186 and 187.
 + This relation is duc to considerations of curvature. At any point of any curve its curvature is its rate of departure from its tangent at that polnt. Its radius of curvature is that of the osculatory circle at that point. (Art. 380.) Now from the nature of the two uniform metlons imposed upen a point that generates a hellx (Art. 120) the curvature of the latter must be uniform; and if deveioped upon a plane by means of its curvature it must bccome a clrcle-the only plane curve of uniform curvature. The radlus of the developed hellx wlil, obvionsly, be the radus of curvature of the space hellx. Following Warren's methed of proof in establishing its value let a, b aud c (Fig. 272) be three equi-dlstant points on a helix, with b on the foremost element; then $a^{\prime} c^{\prime}$ is the elevation of the circle contalning these polnts. One dameter of the clrcle $a^{\prime} b^{\prime} c^{\prime}$ is projected at b^{\prime}. It is the hypothennse of a right-angled triangle having the chord $b c, b^{\prime} c^{\prime}$, for its base. Let 2ρ be the diameter of the clrcle $a^{\prime} b^{\prime} c^{\prime} ; 2 r=b d$, that of the cyllnder. Using capitals for peints in space we have $B C^{2}=2 \rho \times b e$; also $\overline{c^{2}}=$ $2 r \times b e ;$ whence, dividing ilke members and substltuting trigonometric functlons (sce note p . 31), we have $\rho=r \sec ^{2} \beta, 1 \mathrm{n}$ which β is the angle between the line $B C$ and its projection.

 Let θ be the incllnation of the tangent to the hellx at b^{\prime}. If, now, beth A and C approach B, the angie β will approach θ as its linit; and when A, B and C become consecutive pelnts we whll have $\rho=r \sec ^{2} \theta=$ the radins of the esculatory clrcle $=$ the radius of curvature.

 For another proof, involving the radlus of curvature of an elllpse, see Olivier, Cours de Geometrie Descriptive, Third Ed., p. 197.

[^27]: * By the definition of a surface of revolution (Art. 340) any point on it can generate a circle about its axis. lf, then, two surfaces have the same axis, any point common to hoth surfaces would generate one and the same circie, which must also lie on both surfaces and therefore be their iine of intersection.

